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CHAPTER 1

THE DAMPING OF FLEXURAL AND ACOUSTIC WAVES
BY A BIAS-FLOW PERFORATED ELASTIC PLATE




Report No. AM-96-006 Boston University, College of Engineering

SUMMARY

An analysis is made of the damping of sound and structural vibrations by
vorticity production in the apertures of a bias flow, perforated elastic
plate. Unsteady motion causes vorticity to be generated at the aperture
edges; the vorticity and its energy are swept away by the bias flow and result
in a net loss of acoustic and vibrational energy. In this paper we
investigate the interaction of an arbitrary fluid-structure disturbance with a
small circular aperture in the presence of a high Reynolds number, low Mach
number bias flow. By considering the limit in which the aperture is small
compared to the length scale of the impinging disturbance, it is shown that
the effect of the interaction can be represented by a concentrated source in
the plate bending wave equation consisting of a delta function and two of its
axisymmetric derivatives. A generalized bending wave equation is then
formulated for a plate perforated with an homogeneous distribution of small,
bias flow circular apertures. This equation is used to predict the
attenuation of sound and resonant bending waves by vorticity production.
Acoustic damping is found to be significant provided the fluid loading is
sufficiently small for the plate to be regarded as rigid (e.g., for an
aluminium plate in air when the frequency is not too small). On the other
hand, a bending wave is effectively damped only when the fluid loading is
large enough for the wave to produce a substantial pressure drop across the
plate; when this occurs the predicted attenuations are comparable with those
usually achieved by the application of elastomeric damping materials.

Numerical predictions are presented for steel and aluminium plates in air and

water.
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I 1. INTRODUCTION

Aerodynamic sound and vibrations are generated by turbulence and other
unsteady distributions of vorticity, and by their interactions with adjacent
elastic bodies [1 - 11]. Acoustic energy can also be dissipated by vorticity
production, however, when a sound wave impinges on a solid surface or fluid
region of nonuniform mean density. For example, sound incident on the sharp
trailing edge of an airfoil in a mean flow will cause vorticity to be shed
into a wake in accordance with the unsteady Kutta condition; at low Mach
numbers this leads to an increase in the kinetic energy of the mean flow and
wake at the expense of the sound [12, 13]. Similarly, one or more perforated
plates aligned with the mean flow through the tube banks of a heat exchanger
cavity can be used to suppress flow-induced, cavity acoustic resonances by the
production of vorticity in the perforates; the kinetic energy of the vorticity
is extracted from the sound, convected away by the ﬁean flow, and ultimately
dissipated by viscous and thermal processes [l4, 15]. The same mechanism is
responsible for the greatly improved attenuation of "screech" tones in the jet
pipe of a jet engine when a bias flow is maintained through the perforated
heat shield normally used to protect the wall liner from contact with hot

combustion products [16, 17].

The effectiveness of the acoustic attenuation in these cases is critically
dependent on the presence of mean flow [18 - 21]. Analytical predictions for
rigid perforated screens indicate that the attenuation is linearly
proportional to the acoustic amplitude [16, 17, 20 - 24], which is in broad
agreement with experiment [17 - 19, 24, 25]. In the absence of flow the
attenuation is either a nonlinear function of the acoustic amplitude (and
therefore weak) or is dominated by the less efficient action of viscous

dissipation in the apertures [26 - 30].

Theoretical analyses of sound absorption by vorticity production have
hitherto assumed the screen, plate, etc (where the vorticity is generated) to
be rigid. However, in most practical configurations high acoustic intensities

are accompanied by structural vibrations, and a substantial part of the noise

energy is actually contained in vibratory modes of the structure. These modes

would also be expected to be damped by vorticity production, and the primary
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practical objective may be the suppression of potentially harmful structural
vibrations rather than the sound. The simplest model problem that exhibits
structural damping by this means (and which is analogous to the
acoustic-trailing edge problem mentioned above [12, 13]) is that in which a
bending wave on a thin elastic plate is reflected at a trailing edge in a
parallel mean flow (see [31]). Incident bending wave energy is dissipated at
the edge by scattering into sound, and by a transfer to the kinetic energy of
the mean flow and wake. Below the coincidence frequency of the plate
(conventionally defined as the frequency above which the phase velocity of
bendihg waves on the plate in vacuo exceeds the spéed of sound in the fluid)
the efficiency with which sound is generated is usually very small, but much
larger net losses are predicted in [31] owing to the generation of wake

vorticity.

In this paper we investigate the efficiency with which both sound and thin
plate bending waves are attenuated when the plate is drilled with an
homogeneous array of small circular apertures through which is maintained a
steady bias flow. Damping is caused by vorticity generation at the aperture
edges triggered by the fluctuating pressure drop across the plate produced by
the incident disturbance. The attenuation of sound by a rigid bias flow
screen was considered in [21]; it will be concluded from the present analysis
that the rigid plate approximation is applicable only for small fluid loading,
for a steel plate in air, say. A sound wave incident on the same plate in
water generally induces a negligible pressure differential across the plate,
and the acoustic attenuation is also negligible. For heavy fluid loading,
bending waves are predicted to be significantly damped over an intermediate
range of low frequencies, centred around an aperture Strouhal number wR/U -
0(1l), where w denotes radian frequency, R aperture radius, and U is the mean
velocity in the aperture. The strength of this damping will be compared with
that normally achieved by coating the plate with an elastomeric material [32],
whose use frequently entails substantial and undesirable increases in the
structural mass, especially in applications at low frequencies. It is
predicted that comparably large attenuations are possible by perforating the
plate (say, with 5% "open area") and maintaining a bias flow through the
apertures. In principle the bias flow velocity and aperture radius can be

chosen to yield optimal attenuation over a prescribed frequency range, and a
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practical damping system might be "tuned" within certain limits by varying the
bias flow pressure to accommodate varying frequency characteristics of a

particular noise source.

The scattering theory for an arbitrary flexural disturbance incident on a
single, small aperture in the presence of a bias flow is developed in §2. The
result is used (§3) to formulate a generalized bending wave equation for a
plate perforated with a uniform (but sparse) distribution of apertures.
Numerical results are given in §3 for the attenuation of sound and bending

waves, and a comparison made with damping produced by an elastomeric coating.




-
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2. SCATTERING BY AN APERTURE IN THE PRESENCE OF A BIAS FLOW

2.1 The governing equations

A thin infinite plate of thickness h, mass m per unit area and bending
stiffness B is immersed in fluid of mean density p_ and sound speed c¢_. In
the undisturbed state the plate occupies the plane x, = 0 of the rectangular
coordinate system (xl,xz,xa) and is pierced by a small circular aperture of
radius R whose center coincides with the coordinate origin (see Figure 1). A
mean pressure differential is maintained across the plate which produces a
nominally steady, low Mach number, high Reynolds number "jet" of fluid through

the aperture from the "upper" (x2 > 0) to the "lower" (x, < 0) side.

Consider small amplitude, time harmonic motions of frequency w (> 0)
proportional to e " The exponential time factor is henceforth suppressed,
and the flexural displacement of the plate (in the positive xz-direction) and

perturbation pressure are respectively denoted by §+(xl,x3) and p(x). On

X, = 0, (xiﬂcg)l/2 >R, ¢, and p satisfy the bending wave equation [33]
4 2 _ 2,.241/2
(BVZ- mo® )¢, + [p] = 0, (xl+x3) > R, (2.1)
where, [p] = p(xl,+0,x3)—p(x1,-0,x3). (2.2)
and V; = (62/8x§+82/8x§)2 is the biharmonic operator. Except in the immediate

vicinity of the aperture, where the influence of the jet becomes important,
the small amplitude pressure fluctuations may be assumed to satisfy the

acoustic equation

2 2 _ >
{Ve+ no}p =0, X, % 0, (2.3)
where k= w/c° is the acoustic wavenumber. This equation ignores the

influence of convection by the residual effects of mean flow at large
distances from the aperture, but this is negligible when the Mach number is

small.

As x, > +0, (xi-&-xg)”2 > R, the xz-component of the fluid velocity becomes
equal to -iw{ , so that for small amplitude flexural motions of the plate the
pressure p and {  are related by the linearized, x,-component of the momentum

equation of the fluid:
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1 dp
p, w2ox,

¢, = x, > %0, (xZ+x2)V? >R, (2.4)

)
For an aperture whose radius R is much smaller than the length scales of

the flexural and fluid motions, the motion in the immediate vicinity of the

aperture may be regarded as axisymmetric. The boundary conditions that no

force and moment are applied at the edge can therefore be taken in the form

[34]

(1-0) 8¢,
vie - 2 =0
28+ r Oor
r = (x24+x2)'% > R+0, (2.5)
3 2
a—rv2§+ =
where Vg = az/axi+62/8x§, and ¢ is Poisson’s ratio of the material of the

plate.
2.2 The composite bending wave equation

The domain of validity of the bending wave equation can formally be
extended to include the region occupied by the aperture by first introducing

the indicator function

f(xl,xs) = r(xl,xa) - R, (2.6)
and defining a composite fluid-structure displacement { on x, = 0 by

C(x,,%,) = ¢ H(E-€) + ¢ H(-f-¢), € > +0, (2.7)

where H(x) is the Heaviside step function (=1, 0 according as X Z 1), and ¢_

denotes the perturbation of the x, -component of the fluid displacement within

2
the aperture. Equation (2.1) is then multiplied by H(f-&) and rearranged to

yield, as & » +0,
(BV! - mo? }(H(£)S, )} + H(E)[p] = BVS(Ve(s VH(£)}} + BV, (VH(£)eV( )
+ BVe((Vi¢ )VH(E)) + BVH(£)eV(Vi¢,), (2.8)

where VH(f) = §(f)Vf, and 6(f) is the Dirac delta function, which vanishes

except at the rim r = R of the aperture; ¢  and its derivatives on the right
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hand side are evaluated at r = R+0.

Continuity of pressure within the aperture implies, for a plate of
infinitesimal thickness (more precisely for h < R), that [p] = O within the

aperture, and therefore (as ¢ » +0)
(BV' - mo?) (H(-£)¢_) + H(-E)[p] = (BV:- mo®)(H(-£)C.). (2.9)

When this is combined with equation (2.8) the composite displacement ¢ is seen

to satisfy
(BV; - mo? )¢ + [p] = BV, (Ve{s VH()}) + BVZ (VH(£) V¢, ) + BVe((Vig, )VH(E))

+ BVH(f)eV(Vi¢,) + (BY,- mw? } (H(-£)¢_ ), (2.10)

where the "source" terms on the right hand side depend only on conditions at
the edge of the aperture and on the perturbation flux through the aperture.
This equation is applicable everywhere on x, = 0, including the region

occupied by the aperture.

Consider the limiting form of this equation when R becomes small compared
to the dominant length scales of the fluid and structural motions, i.e., for
noR, KOR < 1, where Ko = (mwz/B)IM is the in vacuo bending wavenumber. In
this limit the dominant components of the scattered fields, and therefore of
the source terms in (2.10), must be axisymmetric. As R »> O the sources vanish
everywhere except at r = 0, and must ultimately reduce to combinations of the
surface delta function 6(x) = 6(x1)6(x3) and its axisymmetric derivatives
[35], where, however, the highest order derivatives in the limiting forms of
the first four source terms in (2.10) must be restricted to ensure that the
displacement of the plate remains finite as r » R+0. In the final source
{H(-f)¢_} » g6(x) as R » 0, where q denotes the perturbation volume
displacement through the aperture. Thus, in the leading order of

approximation, equation (2.10) becomes,
{BV, - mo?}¢ + [p] = a,6(x) + azvgé(x) + q{BV, - mw?}6(x), R = O, (2.11)

where the values of the coefficients a;, a,, q remain to be determined; they

represent the strengths of the various source terms to which the aperture is

equivalent as R » 0.
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2.3 The scattering problem

Let the flexural disturbance

¢, = ¢, =g et KR < 1, (2.12)

propagating parallel to the x -axis be incident on the aperture, where { is
constant. (. and the accompanying pressure jump across the plate (p;], say,

satisfy the homogeneous form of equation (2.11) (no source terms) .

Denote the scattered flexural displacement and pressure by gs(xl,xa) and
ps(x), respectively. Equation (2.11) determines the functional forms of {_
and p_ in an "outer region" at distances x| » R from the aperture in terms of

the coefficients a , a q. Write

0 2’

0
¢ (x,,%,) = J ¢ (et dk dk,, k= (k,0,k;)
-0
(2.13a, b)
o0 A
. gs (k) i o
ps (X) - 'lpowzsgn(xz) W el{k X"FY(k)lel)dkldka’ Xz z O’

where fs(k) is the Fourier space transform of Cs with respect to the planar

coordinates x , X,, and v(k) = (»ci-kz)”2 (k =|k|) is positive for real k < «_,
and positive imaginary for k > «x_. The integral representation of the

scattered pressure is a solution with "outgoing" wave behavior of the acoustic
equation (2.3), and is applicable in the outer region where convection by the
bias flow jet can be ignored; the integrand is chosen to ensure that ¢ and p_

satisfy condition (2.4).

The Fourier amplitude fs(k) is determined by substituting from (2.13)

into the left hand side of (2.11). The net displacement on x, = 0 can then be

cast in the form:

1 (® (ay-a,k?+q(BK* -m?) }e KX ikx
£ (x,,%,) = (2W)2Iw . dk dk, + ¢ e, (2.14)
where
D(k,w) = Bk* - mo? - 2ip w?/v(k) (2.15)




4
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is the bending wave dispersion function [33]. In the absence of dissipation
D(k,w) has two real zeros that determine the wavenumbers k of undamped
flexural motions of the homogeneous plate, and the integration contours in
(2.14) must be indented to pass around the corresponding poles of the
integrand in directions that are consistent with the radiation condition.
This can de done by temporarily assigning to w a small positive imaginary

part, thereby displacing the poles off the real k-axes [36].

The values of the source strengths a,, a,, q are found from a

0 )
consideration of conditions in the immediate vicinity of the aperture. This

is facilitated by first re-casting (2.14) in the form

® (g, -a,k2+2iqp,w? /v (k) e KX

dk.dk. + ¢ elf¥;
D(k,w) 1 3 g.Oe

(%, %)) = W6GO + =]
¢ X, ,X;) = qo(X (2n)?

-

(2.16)

In this "outer" formula for ¢, the first term on the right hand side is the
singular component of {_ associated with the volume displacement through the
aperture. The remaining terms (which are non-singular at x = 0) make finite
contributions to the plate displacement ¢, , and two linear algebraic equations
involving the coefficients a , a,, q are obtained by substituting for ¢, into
the edge conditions (2.5). Since only the axisymmetric part of the scattered
field is being considered, it is necessary to retain only the axisymmetric

component §°Jo(nr) of the incident wave Bessel function expansion [37]
¢ einxl = goeinrcoso = go[Jo(nr) + Z;q i“Jn(nr)cos(nﬁ)], X = rcosf.

Conditions (2.5) are then found to give, respectively,

i

A01ao + AZla2 + qu {nRJO(nR) -(1-0)Jl(nR)}(n§°/R) .17

3
Aozao + Azzaz + qu -K Jl(nR)go ,

where Aw , A&j, Qj (j =1, 2) are defined in the appendix.

A third relation involving a , a,, q is obtained by examining the motion

in an "inner" neighborhood of the aperture. The pressure here can be written,

p(x) = p w?¢ x, + P’ (%), (2.18)

10
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where the first term on the right is defined such that the corresponding
component of (-l/po)ap/ax2 at xé — 40 is equal to the normal acceleration of
the plate produced by the incident wave {oei”xl. When the characteristic
bending wavelength is much larger than the aperture diameter (K R < 1), the
motion of the plate at distances from the aperture smaller than the
characteristic flexural wavelength will be identical with that of a rigid
plane executing translational oscillations of amplitude {_ 1in the normal
direction. Since also x R <1, the fluid motion may similarly be regarded as
locally incompreséible, and the additional pressure p’(x) in (2.18) calculated
as for an incompressible fluid subject to the rigid surface condition

ap’' /0%, = 0 on x, = 0.

The volume displacement through the aperture can then be expressed in the

form,
q = Ky [p,1/p,0" . | (2.19)

In this expression K; is the Rayleigh conductivity of an aperture in a rigid
plate taking account of the mean bias flow [38]; it has the dimensions of
length and typically K, - O(R). p, denotes the pressure at distances |x| from
the aperture satisfying R < |x| < 1/k_, where the flow may still be regarded
as incompressible. This interval in |x| will exist provided the frequency is
sufficiently small, and it then defines an "overlap" region in which both the
incompressible representation (2.18) and the outer solution (2.13b) are both
applicable. This implies that [p,] can be calculated by considering the
limiting value of the integral in (2.13b) in the overlap region. This
limiting value contains the term

-p w?q/2x|x| = -Kg[p,1/2]x| < [p,], (2.20)
which is discarded, and we then obtain (including also the contribution (p;]-

of the incident disturbance),

. 2 o] _ 2 . 2
ipjw [noq + Jo [ag -2,k +2ip,w q/y(k)]kdk]. (2.21)
T

(p.1 = [p;] - v(k)D(k,w)

For consistency with the matching procedure the remaining terms in q on the
right hand side should also be discarded, since they are easily shown to be at
most O(KOKR)[pm], which is of smaller order than the term discarded in (2.20).
WeAshall do this, but it should be noted that this is actually equivalent to

neglecting a small effect of fluid compressibility responsible for energy

11
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losses due to acoustic scattering. Then substituting into the right hand side
of (2.19), we obtain the third equation for a , a,, q:

' 2
Aga, + A a +q-= KR[pI]/pow , (2.22)

where A, and A, are defined in the Appendix.

The solutions of equations (2.17), (2.22) are now expanded in powers of
KR (<1). Only the axisymmetric components of the scattered fields are being
retained in the present approximation, and it can readily be verified that the
expanéion must therefore stop at terms of order (KOR)Z. The expansion can be
effected by first nondimensionalizing the expressions (A.1) - (A.3) for the
coefficients AM , Aﬁ , Qj. It is found that a, and a, are each O((KOR)Z} and

that q - O(KOR). To this order of approximation equations (2.17) and (2.22)

yield
2q.4 3
a, = -mR*B ¢ - 2RKR[pI] ,
(1+0) _,_ 5
a, = - (1_0)1rR B¢, g (2.23)
_ ™=
q= (.02 [pI] s J
| o
In these expressions m“go = Vng, nzgo = -Vggl, so that (2.11) becomes
(BV'- mw?}¢ + [p] = -{7RZBV:¢_ + 2RK [p ]}6(x) + (140) R2py? V26 (x)
2 ¢ P 2§I RKR pI (1_0)7\' ng' 2

KR 4 2
+ P wz[pI]{BVZ- mw’ }6(x).  (2.24)
o]

In this form, the equation describes the scattering of an arbitrary incident
displacement ¢, and pressure field p; whose characteristic length scale is

much larger than the aperture radius.
2.4 Scattering of a bending wave

The physical significance of the different source terms on the right of
equation (2.24) can be exhibited by consideration of the problem in which the

incident disturbance ¢; = §oe1”x1 is a plane bending wave, for which,

12
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sgn(%;) 19" o i (rx +v(k) |x, |)

, v(k) = i(k?-k2)YE (2.25)
v(x) °

P; T -

where the wavenumber k > k= may be taken to be the positive real zero of the
dispersion function D(k,w) defined by (2.15). This is an evanescent wave that
propagates subsonically relative to the fluid; the accompanying fluid motion
1/2

is confined to boundary layer regions of width - 1/(nz-n:) on either side of

the plate within which the pressure p; decays exponentially, although the

decay may be slow when x - K, (i.e., when w } wc).

The interaction at the aperture will result in an exchange of energy

between the wave field and the bias flow jet, whose magnitude can be
determined from a consideration of the energy equation. To do this, consider
an homogeneous, time-dependent, fluid loaded plate, driven by a distribution
F(xl,xs,t) of normal stresses (taken to be positive in the xz-direction).

This equation is derived from (2.1) by first replacing w by ig/dt, and
inserting F on the right hand side. Multiplying by ¢ = 8¢/3t and rearranging,

we find

5;[%“52 + %B<V§§)2] + diV[B§V<V§§) - B(V§§>V§] + ¢(p] = {F. (2.26)

The first term on the left is the time rate of change of the structural energy
density; the divergence describes the flux of energy within the plate, and
¢[p] is the energy flux from the plate into the fluid. The power supplied or

dissipated by the stress field F is determined by their rate of working {F.

In equation (2.10) the role of the stress distribution F is taken by the
limiting form of the sources as ¢ » 0, where the composite displacement ¢ is
given by (2.7). To evaluate the mean energy flux from the aperture the time
factor e ' is restored and the real parts taken of the resulting expressions

for all perturbation quantities. The sources are then multiplied by

iwt

- def_(x,,%,)e ),

ac/8t = Re{-iw{(xl,xa)e_“m} Re{-iw¢ (%, ,%,)e’

1'%3

averaged over a wave period 2m/w, and integrated with respect to (x ,X;).
Note that the first four source terms on the right of (2.10) are multiplied by

the component 8¢, /dt of 4¢/dt, and the final source by 8¢_/dt. As & »> +0 this

13
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is equivalent to multiplying the first two sources in (2.11) by 8¢,/dt and the
final source by 8¢_/d8t. If I, denotes the incident bending wave power
dissipated at the aperture, we then find

3 2
o = - Eﬁzf_lial_[l - R(k?-2) Y Im(K ). (2.27)

A (K2-K2)

Thus, flexural wave power is dissipated at the aperture provided the
imaginary part of the conductivity K  is negative (for kR <€ 1). In the
absence of the bias flow, and when viscous dissipation is ignored, KR is real
and equal to 2R for a plate of negligible thickness [38]. In this case,
however, energy must actually be extracted from the bending wave by scattering
into sound. This loss cannot appear in (2.27) because the left hand side of
the energy equation already accounts for energy interchanges between the

structural and acoustic fields.

The aperture conductivity K; becomes complex when account is taken of the
bias flow. For a high Reynolds number, low Mach number jet it can be

expressed in terms of the aperture Strouhal number S = |w|R/Uc in the form
K, = 2R{I(S,) - ia(s, )}, (2.28)

where I and A are real valued, and U_ is the mean convection velocity of
vorticity in the jet shear layer (approximately equal to one half of the jet
velocity). The following expressions for T and A are derived in [21] and used

in the following discussion:

7% [1+8, ]I, (S, )? + 4[S cosh(S,) - sinh(Sb)]cosh(St)Kl(St)zezst

T'(s ) =

t 2 2 2 2 28 !
St[w Il(St) + 4cosh (St)Kl(St) e“"t]
2wIl(St)K1(St)ezst

A(St) - 2 2 2 2 28 ! (2.29)

St[w Il(St) + 4cosh (St)Kl(St) e“7t]
where Il and K1 are modified Bessel functions [37]. T(St) and A(St) are both

positive for S, > 0, and their variations with S _ are illustrated in Figure 2.
Predictions based on these formulae of the attenuation of sound by a rigid

bias flow perforated screen have been found to be in good agreement with

experiment [17].

14
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The first term in the square brackets of (2.27) is supplied by the volume
displacement (final) source in equation (2.24); it accounts for the absorption
of energy by the mean flow. The second term, which is of opposite sign, comes
from the first source on the right of (2.24) (i.e., from ao), and describes
the production of bending waves at the aperture by the extraction of energy
from the mean jet flow. However, «R < 1, and the net effect is always energy
dissipation, at least for the range of wavenumbers and frequencies for which

the present approximations are applicable.

The absorption cross-section of the aperture is equal to II, /2RI, where
I is the power in the incident bending wave per unit distance parallel to the
plate and wavefront. It can be expressed in the form [39]

w , 0D
HI = Zlgol E"E(K'rw)) . (2‘30)

where D(k,w) is the bending wave dispersion function (2.15). The energy in
the incident wave is shared between the kinetic and elastic energies of the
plate and the energy of the evanescent fluid motions on either side of the
plate [33]. Combining equations (2.27) and (2.30) we find

172 ) 2_,2y1/2
M,  8(ep,R/p.h) A(S)[1 - R(k"-r5)"""] (2.31)

?

2RI, (Ms,)1/2 (/K ) [5(k/K )" - 4(re /K2)Z -1]

where M = Uc/c° is the convection Mach number of the bias flow jet, p_ = m/h
is the mass density of the material of the plate, and € is a fluid loading

parameter defined by
1
Po E 2

€= ;:[12pscg(1-02)] ’ (2.32)

where E is Young’s modulus for the plate.

The dependence of IIA/ZRHI on Strouhal number S, = wR/U_ is illustrated in
Figure 3 for an aperture in a steel plate in water (e = 0.135) when the bias
flow convection Mach number M = 0.003 (U_ = 4.5 m/s). The absorption peaks
near St = 1 where A(St) = -Im{KR} assumes its maximum value. It may be
remarked that the corresponding loss due to acoustic scattering (which has

been neglected) is O(k R) relative to (2.31).
& °

15
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3. THE BIAS-FLOW PERFORATED ELASTIC PLATE
3.1 The generalized bending wave equation

Consider next the case of an elastic plate perforated with a distribution
of small circular apertures. Let the apertures have equal radius R, and be
distributed with their centers at the random points X = (an’o’xna) on the
plate, with N per unit area. By setting

_ . 2 . 2,1/2 _
fn {(xl an) +(X3 Xn3) } R,

we can define the following analog of equation (2.7)

¢(x,,x,) = ¢, |, H(E -e) + ¢ % H(G-f -e). &> +0, (3.1)

When the open area ratio a = NaR? < 1, the distance (- 1/Vﬁ) between
neighboring apertures is much greater than R. Then, provided « R, K R < 1,
the length scales of variation of all disturbances incident on an aperture
(including those -~ 0(1/VN) due to scattering by neighboring apertures) will be
large relative to R, and the dominant component of the scattered acoustic and
flexural waves will have radial symmetry with respect to that aperture. To

the order of approximation considered in §2, it can then be deduced that

(BV:- mo® )¢ + [p] = 1, [-fﬂRszéfn + 2RK [p, 110(x-x,)

(1+0)
+
(1-0)

w?

2 o2 2 Kp 4 2
nR szgn.vzé(x—xn) + P [pn]{BVZ- mw }6(x—xn)]. (3.2)

o

In this equation ¢ and [pn] respectively denote the flexural displacement and
pressure jump at x produced by any incident sound or flexural waves together

with collective contributions caused by scattering by the remaining apertures.

When the characteristic wavelengths of the sound and structural motions
are large compared to the distance between neighboring apertures it is
convenient to simplify (3.2) by averaging with respect to aperture positions.
This enables attention to be focussed on the overall effect of the apertures
rather than local details at each aperture, and henceforth { and p will be
taken to denote the averaged displacement and pressure respectively. This

averaging procedure is equivalent to that used to study wave propagation in

16




Report No. AM-96-006 Boston University, College of Engineering

dusty gases and bubbly media [40 - 45], and in the classical Lorentz-Lorenz
theory of a dielectric [46]. To determine the average contribution from the
sources in (3.2) at x = x , say, we first obtain appropriate expressions for
¢, and [pm] by means of the following argument. For a large plate of area A
the probability that x 1lies within the area element dx = dx 6 dx , is equal
to dx /A, and there are NA apertures in all. In a first approximation, for
@ < 1, the apertures may be regarded as independently distributed, and the
average on the right of (3.2) can be evaluated by first averaging over all
X #X . The quantities { and [pm] must then be set equal to the
correéponding averaged incident fields, following ﬁhich we can average with
respect to x . When the total number of apertures is large, these incident
field averages cannot differ significantly from the overall average
displacement and pressure jump, since the latter are hardly affected by the
presence or absence of the aperture at x_ when NA > ®. Thus in the leading
approximation the contribution from x as NA » © is given by writing

¢ = ¢(x, .x,) - NK [p_1/p w* and [p,] = [p(x, 0,x,)], for a <1.

m

Making this substitution in (3.2) and performing the average with respect

to the x , we obtain the generalized bending wave equation

200 200

{[1 ; m]svg - mwz]g' + [1 + ZNRJS[l - §R_io—az[[l . -ﬂ—_o—)]BVZ - mwz]]][p] - 0.
(3.3)

In this equation the term in ¢ accounts for an effective decrease in the
stiffness of the plate caused by the presence of the apertures: this is
independent of fluid loading, and an identical term is obtained if the
calculation is repeated for a plate in vacuo. The terms involving the
conductivity K, represent the influence of the fluid at the apertures. In the
absence of bias flow all of the modified coefficients in the equation are
real, and equation (3.3) then has undamped plane wave solutions that
correspond to the undamped bending wave modes of an ideal, fluid loaded,
homogeneous plate (the attenuation caused by acoustic scattering at the

apertures is a higher order effect, and is not included at the present order

of approximation).
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3.2 Dissipation of sound

To illustrate the implications of equation (3.3) consider the absorption
of sound incident on a bias flow elastic screen. For simplicity attention is
confined to plane acoustic pressure waves of the form e 1%.%; incident

normally on the screen from x, > 0 (see Figure 4). The pressure can be taken

2
in the form

(3.4)

where R and § are appropriate reflection and transmission coefficients,
respectively. The (generalized) displacement { of the screen is related to p
by ¢ = (1/pow2)6p/6x2 (x2 » +0). This relation and equation (3.3) supply two
equations, from which R and 3 are found to be given by

m'co/po
R=1-3-= . (3.5)

m';° + 2i[1 + ;a(I'-iA) [1 + 21;:?”

o

Define an absorption coefficient 8l /I, where I, denotes the acoustic

power incident on the screen and GHI is the dissipated power. Then

6m /M, =1 - [R|1%2 - |32
§aMStA[1 + 2”°§]
= " Ps (3.6)
2 bah poR1)? [poR ZaT[ poR]]z

The solid curves in Figure 5 depict the variation of 6Il /NI, with aperture
Strouhal number S_ =>wR/Uc for sound incident on a perforated aluminium
plate in air, when the bias flow convection Mach number M = 0.05 and when R/h
= 5. According to this figure the maximum possible attenuation of &Il /Il just
less than 0.5 (3 dB) occurs at an open area ratio a = M over a range of

Strouhal numbers centered on S, = 0.4. At very low frequencies the impedance
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offered to the sound by the plate becomes negligible, the bias flow jet
velocities are unmodulated by the sound, and there is no transfer of acoustic
energy to hydrodynamic motions. In this low frequency limit (s, < 1)

iA m lg2 | 1
T - iaA 3St Alﬂ'st’

and

2aMs? [1 + 2P0 ﬁ]
Ps , (3.7)

SI_/I, .
2 2
Si [M + a[l + 2—E£:RD + 4[—-HZZR]

which implies that significant damping can occur provided wh/c_ > p_/p_. The
results shown in the figure are for R/h = 5. The present theory is applicable
only when R is large enough to ensure that the Reynolds number of the bias
flow jets is large. At smaller values of R/h the predicted absorption is
similar to that shown in the figure, but the widths of the bell-shaped solid

curves increase, and the maxima shift to slightly lower frequencies.

The corresponding attenuation produced by a bias flow rigid screen at
arbitrary frequency is obtained by setting poR/psh =0 in (3.6); the
predictions in this case are depicted by the broken curves in Figure 5. At
low frequencies the rigid screen absorption coefficient approaches the
limiting value given by (3.7) when p R/p_h > O namely, OIl /I = 2aM/ (M+a)?
(St < 1) [13], which takes its maximum value (of %) when a = M, as for the
elastic screen. The elastic screen predictions of Figure 5 differ from those
for a rigid screen when the frequency is low enough that the screen may be
regarded as acoustically transparent. This behavior is typical of situationé
in which the fluid mass loading of the plate is small (e.g., for metallic
screens in air). For large mass loading (which in practice occurs when p_/p_
> 10'3, for steel in water, say) equation (3.6) predicts that the absorption
of acoustic energy by the elastic screen is negligible at all frequencies, in
contrast to the rigid screen predictions, which are similar to those

illustrated by the broken curves in Figure 5.
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3.3 Damping of flexural waves

The damping of a flexural wave can be examined similarly. Let the
flexural wave be the plane bending wave ¢ - goei”xl with the associated
pressure field defined as in equation (2.25) where now, however, the bending

wavenumber « is a zero of the generalized dispersion function

D(x,w)

= [1 ) (ii)}mk - m - z—y%i [1 + 2NRKg [1 ) ZR;OwZ[[l ) (ii)]“é ) m“’z”]’

which is obtained by substituting for ¢ and [p] in equation (3.3).

In the absence of the bias flow (KR » 2R), D(k,w) has precisely two equal
and opposite real zeros. They satisfy |x| > k, (where y(x) = i(xz-ni)lﬂ) and
correspond to undamped flexural waves on the perforated plate; they are
generally close to the corresponding zeros of the dispersion function D(k,w)
of the homogeneous plate (see (2.15)). To the present order of approximation
there is no damping due to scattering of structural energy into sound. This
is analogous to the corresponding approximation in the theory of
surface-acoustic waves propagating over a nominally plane rigid wall with

small surface irregularities, where the scattering by surface roughness

elements of characteristic dimension R causes the wave to be damped only over

very large propagation distances of order 1/{R4m5} [47, 48].

The absorption of bending wave energy by the bias flow jets causes the
formerly real bending wavenumber k to acquire a small positive imaginary part
that accounts for the progressive decay of the wave. The reduction in the
flexural wave power over a propagation distance 6x 1is equal to
201m{n)6x1£oglo(e) dB, and the power absorbed per wavelength of propagation is
therefore QOWfoglo(e)Im(n}/Re{n} = 54.6Im{x}/Re{x} dB. The dependence of this
absorption on the bias flow Strouhal number S = wR/U_ 1is illustrated in
Figures 6 and 7 for a perforated steel plate in water and several different
open area ratios o for an aperture radius R = h, 3h respectively. In both
cases the bias flow vorticity convection velocity U = 3 m/s (M = 0.002).
Increasing the open area ratio increases the attenuation, whereas increasing

the size of the apertures reduces the maximum possible attenuation. These
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results have been obtained from a numerical solution of the dispersion
equation D(k,w) = 0, by iterating about the real zero x in the absence of the
bias flow jets. The absorption may also be estimated from the absorption
cross-section formula (2.31). The fraction of the incident power HI absorbed
in a distance 6x; in the direction of propagation is NHAGXI/HI = ZIm{n}éxl;

using (2.31) it follows that

Im{k} _ 8aeA(S, ) (1 - R(nz-ng)”z}

Re{x) nMS_(x/K )2[5(k/K )" - 4(kk /KZ)2 - 1] 2

where on the right hand side k denotes the real value of the wavenumber in the
absence of dissipation. This approximate formula tends to over predict the
attenuation by several dB near the maxima of Figures 6 and 7. It shows,
however, that the change in the attenuation with R/h (for fixed values of the
remaining parameters) is caused by the consequent change in the real part of
the bending wavenumber x relative to the vacuum wavenumber K (c.f., Figure 8
below). Note also that, implicit in the present analysis is the requirement
that R » h, and this might cast some doubt on the validity of the results
shown for R/h = 1 in Figure 6. However, the damping is governed by the
imaginary part (-A) of the Rayleigh conductivity K , which is non-zero because
of the production of vorticity in the apertures. The value of A given in
(2.29) would be expected to be applicable provided the length scale U_/w of
the vorticity is large compared to the plate thickness h, and the predictions

of Figure 6 should therefore be valid at least for S, < 1.

To assess the likely significance of the attenuations produced by a bias
flow screen we plot in Figure 8 the corresponding absorption of bending waves
on a coated steel plate in water. For the purpose of illustration the mass of
the coating is neglected, but the coating is assumed to make the effective
stiffness of the plate complex, such that the bending stiffness B of the
uncoated plate is replaced by B(l - in), where n (> 0) is a loss factor whose
value is determined by the properties of the coating, and is typically of the
same order as shown in the figure [32]. The abscissa w/w = eM(psh/Rpo)St,
where w = ci(rn/B)”2 is the coincidence frequency. As w increases towards w_
both the bending and acoustic wavelengths become comparable to the thickness

of the plate and the thin plate equation (2.1), on which the present analysis
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is based, ceases to be applicable. A comparison with figures 6 and 7
indicates that the attenuations achieved by the bias flow jets can be

comparable with those predicted for the coated plate.

Much smaller attenuations are predicted for bending waves propagating on
a bias flow screen in air. Figure 9 depicts typical predictions for an
aluminium plate with three different open area ratios when R = 5h and the mean
bias flow jet velocity U = 2Uc = 3.4 m/s. In possible applications the
thickness h of the plate will usually be small (of the order of 0.01 cms), and
the bias flow Reynolds number UD/v (D = 2R being the aperture diameter, and v
the kinematic viscosity) must be large enough to ensure that motion in the
apertures is not impeded by viscous action. For the cases illustrated in the
figure UD/v = 250, which is probably close to the lower limit for which the
theory is likely to be relevant. The Reynolds number could be raised by
operating at a higher jet velocity, but this would degrade the absorption
which, according to (3.9), is inversely proportional to the vorticity

convection Mach number M.
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4. CONCLUSION

Vorticity is produced by fluid motion relative to a solid surface, the
rate of production being greatest in regions where the pressure and velocity
in the primary flow change rapidly, such as at corners and sharp edges. The
kinetic energy of the motion induced by this vorticity is derived from the
primary flow, and vorticity generation accordingly transfers energy from that
flow to generally smaller scale vortex motions. In this paper we have
examined the production of vorticity at the sharp edges of circular apertures
in a thin elastic plate by long wavelength sound and vibrational motions of
the plate The vorticity is diffused from the edges by viscosity, resulting
in the dissipation of the sound and structural motions. In the absence of
mean flow through the apertures the dissipation is caused by the nonlinear
convection of vorticity from the apertures and by viscous damping, both of
which are weak because the growth of vorticity tends to be inhibited by
periodic reversals in the primary motions, which produce vorticity of
fluctuating sign. The damping is significantly increased, however, when a
high Reynolds number mean flow is maintained through the apertures. Viscous
effects are now important only in the immediate vicinity of the aperture
edges, where vorticity is released into the flow; but the vorticity is swept
away from the plate by the flow, and its kinetic energy is permanently lost to

the incident acoustic and vibrational motions.

Our analysis of this mechanism for a bias flow, perforated elastic plate
has confirmed that significant attenuations of sound and flexural vibrations
are possible provided a sufficiently large fluctuating pressure gradient can
be established across the screen to cause unsteady production of vorticity in
the apertures. When the fluid loading is large (e.g., for metallic plates in
water) an unrestrained elastic screen is effectively acoustically
"transparent”, and the damping of sound by vorticity production tends to be
negligible. Significant acoustic attenuations can occur for a lightly loaded

plate (in air, say) provided the frequency w satisfies wh/c_ > P /P, -

The damping of bending waves (i.e., of resonant structural waves that
propagate subsonically relative to the fluid) increases with the fluid

loading, since the surface pressure fluctuations produced by the passage of a
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bending wave of given surface displacement tends to increase with fluid
density. The damping is greatest for aperture Strouhal numbers S, = wR/U_
between about 0.03 and 3, and the attenuation experienced by bending waves on
a perforated steel plate in water (of the order of 4 - 6 dB per wavelength of
propagation) can then exceed or be comparable with that possible when motions
of the plate are heavily damped by the application of surface coatings. In
air the predicted attenuations are very much more modest, ranging between 0.5

- 1 dB per wavelength.
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APPENDIX

The coefficients Abj’ A% . Qj

P 1. (1.
A, = g%[Hé”(KOR) + HV(IK R) - ( U)H(”(K R) + 1(K ;)H;“(1K0R>]
) ipowzjm k% [kRJ, (kR) - (1-0)J, (kR) ]dk
aR Jo (k) (Bk* -mw? )D(k,w) ’
iR . (1- i(1-
by = @“W(M -%”Q&R)-_E%Qfm%m -MK;hfkmﬁﬂ
. ipowzjm k* [kRJ, (kR) - (1-0)J, (kR) ]dk
R Jo 4 (k) (Bk* -mw? )D(k,w) ’
_ip,w?® K [(1-0)J, (KR)-KkRJ, (kR) ]dk
Q- TR Jo v(k)D(k,w) ’ (A.1)
RSN FPeey TSP ipgw? (” k' J, (kR)dk
B0z 83[1H1 (K,R) - H (IKOR)] i Io 7(K) (BK* -mw?)D(k, )
iR, 1y ip w2 k®J, (kR)dk
T [Hl (KR) + iH, (lKoR)] B Jo 7(k) (BK* -mw? )D(k,w)
o - ipowz[l_einoR . zfm [m+21po/7(k)]J1(kR)dk]_ A2
2~ 73 (%R “Jo ~(K)D(k,w) ’ (8-2)
CiRg (" kdk iRy (T k3 dk
R i s T (4-3)

The integrals in these expressions are taken along the positive real axis
indented to pass below real singularities of the integrands (equivalent to

replacing w by w + ie and taking the limit & »> +0).
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LIST OF PRINCIPAL SYMBOLS

source coefficients in equation (2.11) (j =1, 2)
see (2.17), (2.22) and appendix

bending stiffness

speed of sound

uniform plate dispersion function (2.15)
perforated plate dispersion function (3.8)
Young’s modulus

see equation (2.6)

plate thickness

Heaviside unit function

(k1’0’k3)’ wavenumber in plane of plate
(mwz/B)lﬂ, vacuum bending wavenumber

2R(T - iA), Rayleigh conductivity of aperture, see (2.28)
p h, mass of plate per unit area

U /c, ., Mach number

number of apertures per unit area
pressure

incident bending wave pressure, (2.25)
scattered pressure

displacement flux through the aperture

see (2.17) and appendix

(x2+x2)1/2,

aperture radius

wR/U_, Strouhal number

= %U, vorticity convection velocity

mean bias flow velocity

rectangular coordinate (j = 1, 2, 3)

(x,,0,x,)

Nsz, open area ratio
(2 -K*) Y2 (k =|k])
fluid loading parameter, (2.32)
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displacement

flexural displacement of plate

¢
¢
¢ perturbation displacement in the aperture
¢ flexural wave amplitude
¢ scattered flexural disturbance
K flexural wavenumber
w/co, acoustic wavenumber
power dissipated at the aperture, (2.27)
incident bending wave power, (2.30)
fluid density
density of plate material
o Poisson’s ratio

radian frequency

reflection coefficient, (3.4)

transmission coefficient, (3.4)
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Figure 1. Configuration of the plate, aperture and bias flow.
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Figure 2. Dependence of the complex Rayleigh conductivity
Ky = 2R(T'-iA) on Strouhal number S..
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Figure 4. Reflection and transmission of sound by a bias-flow perforated

plate.
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Figure 5. Absorption of normally incident sound by a bias flow

perforated screen: , the absorption coefficient
10xlog,,{6I;/M;} (equation (3.6)) for an aluminium

screen in air at different open area ratios «;

————— , analogous predictions for a rigid screen in air.
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Figure 6. Attenuation of bending waves on a bias flow perforated
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number M = 0.002 (U, = 3 m/s).
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Figure 7. Attenuation of bending waves on a bias flow perforated
steel screen in water; the vorticity convection Mach

number M = 0.002 (U, = 3 m/s).
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CHAPTER 2

ENERGY CONSERVATION AND THE DAMPING OF FLEXURAL WAVES
BY VORTICITY PRODUCTION
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SUMMARY

An analysis is made of the transfer of energy between structural/acoustic
vibrations and fluid kinetic energy in flows at very small Mach number. A
general energy balance equation is discussed for a vibrating rigid body in
either incompressible or low Mach number compressible mean flows. This
equation can be used to calculate the growth or decay of structural or
acoustic oscillations, and to locate regions of the flow where energy
exchanges are significant. A similar general treatment for vibrating elastic
bodies does not seem to be possible, except in simple cases involving thin
elastic plates in parallel flow. Two such problems are discussed, involving
the dissipation of structural vibrations by vorticity production (i) at the
trailing edge of a large elastic plate, and (ii) in the circular apertures of
a perforated elastic plate in a two-sided grazing mean flow. The interaction
of boundary layer turbulence with the apertures of a perforated plate can be a
particularly intense source of sound, but in applications where the
characteristic frequencies are small, a grazing flow perforated screen has
been shown to be an efficient sink of acoustic energy. In this paper
predictions are given for the damping of bending waves by the same mechanism.
When the fluid loading is large, such as for a steel plate in water, these
predictions indicate that the damping of resonant bending waves can exceed
that normally achieved by coating the plate with elastomeric damping

materials, at least over a restricted range of frequencies.
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1. INTRODUGCTION

Vorticity is produced by fluid motion relative to a solid surface, the rate
of production being greatest in regions where the pressure and velocity in the
primary flow change rapidly, such as at corners and sharp edges. The kinetic
energy of the motion induced by this vorticity is derived from the primary
flow, and vorticity generation accordingly transfers energy from that flow to
generally smaller scale vortex motions. When the primary motion is produced
by a sound wave incident on, say, a sharp edge, vorticity diffuses from the
edge by viscous action, causing the sound to be damped (e.g., see [1 - 3]).
When the fluid is in a mean state of rest the dissipation is caused by the
nonlinear convection of vorticity from the edge and subsequent viscous
damping, both of which are weak because the growth of substantial levels of
vorticity is inhibited by the periodic nature of the acoustic field, which
leads to the generation of vorticity of fluctuating sign. The damping is
significantly increased, however, in the presence of a high Reynolds number
flow [4 - 16]. Viscous effects are now important only in the immediate
vicinity of the edge, where vorticity is released into the flow; the shed
vorticity is swept away from the edge by the flow, and its kinetic energy is

permanently lost to the incident acoustic wave.

Practical devices for exploiting this mechanism of sound control usually
involve bias or grazing flow perforated screens. In the bias flow case a mean
pressure difference is maintained across the screen producing a steady flow
through the apertures. Damping is caused by the modulation of vorticity
production at the aperture edges by the impinging sound [6, 7, 12, 14 - 16].
A grazing flow screen works in a similar way: unsteady motion produced by the
sound in the apertures generates vorticity which is swept away by the
tangential flow past the screen. In practice high acoustic intensities are
usually accompanied by significant structural vibrations. Since the near
field (non-acoustic) pressure fluctuations produced by a vibrating body can
modulate vorticity production at an edge, it seems likely that a neighboring
perforated structure might also be used to suppress structural vibrations.
This possibility has been examined theoretically by the author, who considered
the damping of bending waves (i) incident on the trailing edge of a large

plate in a mean flow [17], and (ii) propagating on a bias-flow perforated
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elastic screen [18]. For a bias flow screen subject heavy fluid loading (a
steel plate in water, say), it was predicted that damping is significant over
a range of frequencies centered on a Strouhal number wR/U - 0(1l), where w
denotes radian frequency, R the aperture radius, and U the mean flow velocity
through an aperture. These frequencies are typically less than about 0.lw_,
where w_ 1is the coincidence frequency of the plate [19, 20]. The predicted
damping can be comparable with that normally achieved by heavily coating the
vibrating plate with a conventional elastomeric material, whose use frequently
entails substantial and undesirable increases in the structural mass,

especially at low frequencies.

In this paper equations are derived in §2 which describe the transfer of
energy from acoustic and/or structural vibrations to the kinetic energy of the
fluid in low Mach number flows, first for vibrations of arbitrary amplitude of
rigid and elastic bodies, and second for small amplitude motions of elastic
plates in parallel mean flow. These equations generalize results given
previously in [12]. Illustrative applications of the theory are made in §3,
and in §4 the analysis of [18] for a bias flow perforated plate is extended to

investigate the damping of bending waves on a grazing flow perforated screen.
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2. THE ENERGY EQUATION IN FLOW AT INFINITESIMAL MACH NUMBER

2.1 Rigid body vibrating in incompressible flow

Equations describing the damping of structural vibrations by vorticity
production are easily established in the simplest possible case of a rigid
body in an incompressible fluid. Consider a rigid body with surface §
immersed in incompressible fluid of infinite extent and uniform mean density
p, and shear viscosity n. Let the body execute translational oscillations at
velocity u’° (whose mean value is assumed to Vanish) with respect to a fixed
coordinate system (xl,xz,xs), and let V denote the fluid region bounded
internally by S and externally by a large control surface ¥ (Figure 1). The
fluid at large distances from the body is in steady motion at uniform velocity

U°. The velocity v at any point in the fluid can then be cast in the form
v=U+u+ v, (1)

where U and u are the irrotational velocities due to the steady mean flow and
the translational oscillations of the body that would exist if the fluid were
ideal, and v is the additional velocity required to satisfy the no-slip
condition on S and to account for the velocity induced by vorticity in the
flow. This vorticity includes "gusts" convected in the incident stream, and
that produced by vortex shedding from the body. The velocities can be defined
more precisely as follows. Let ¢: denote the velocity potential of the flow
that would be produced in an ideal fluid by translational motion of the body

at unit speed in the i-direction. Then

U= Ugvxj, u = u?V:;S;,
(2)
X

*
X -
J J ¢J"

where Uen ='0, uen = u’en on S, and n is the unit normal on S directed into

the fluid (see Figure 1). The remaining velocity v is determined in terms of

the vorticity w by

I
o
<

.
o)

]
(]
]
o]
2]

U+u+v
w

¢ (3)

I
€

St
=

curlv
[A]
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At large distances from S, |v | - 0(1/]x|%®), and this and conditions (3) are

T sufficient to determine v [21].

The kinetic energy of the fluid fV%po(U+u+vb)2d3x can be partitioned

(with the assistance of the divergence theorem) in the form
JV %pO(U + vb)zdax - I&m pou3¢;(U + v@)odS + JV %pouzdax.

The surface integral may be discarded. The integration over S vanishes
identically because (U+vb)°n =0onS. On %, p°u3¢;(U + v&) =
—po(ijj/lxla)U°, where P, = §; Xju°°dS is the impulse of the oscillatory
motion [21]. The integration over = accordingly vanishes when % is large and
geometrically symmetric; more generally its average value is null, since u°
has zero mean. The final volume integral is the ("reversible") kinetic energy
of the local irrotational motion associated with the added mass of the body;
it is equal to %ALjuzug, where A . is the added mass tensor for translational

motion [21].

The transfer of energy from the body to the fluid is balanced by an
increase in the kinetic energy of the fluid and the dissipation by viscosity,
and can be evaluated from the rate of working of the net surface force F. Let

v . denote fluid velocity relative to the body, i.e.,
rel

— - o = - o
V.=V u = U ujVXj + V. (4)

The net force F exerted on the fluid can be written [22, 23]

aus
= Jo_ 3
F, = A pojv WAV, oVK, d>x + ”Js WAVX, *dS, (5)
where the volume integral in (5) corresponds to the component of force
produced by the normal (pressure) stresses on S, and the surface integral is

the net contribution from the skin friction. The rate at which energy is

supplied to the fluid is equal to F uf.
If
av; av,)2
- e

ax, 0%,
J i
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denotes the viscous energy dissipation rate, Q plus the rate of change of the
fluid kinetic energy can be equated to Fiui to yield the energy equation
3E

- o 3 [¢)
—+Q- poujjv WAV, oVK, &% + nujjs WAVX #dS, 7

where E = fV%pO(U+V@)Zd3x is the kinetic energy of the mean flow and the
vortex field. The contributions from the added mass have canceled from both
sides of this equation, which therefore expresses the rate of dissipation and
production of non-reversible kinetic energy to the rate of working of the
surface stresses on S. For a stationary body (u’ = 0) the kinetic energy is
absorbed entirely by viscous action in the body of the fluid. There are
frequently circumstances, however, in which vortex shedding from a vibrating
body becomes highly organized and correlated over large distances on S.
Kinetic energy of the flow can then be extracted to. drive unstable

oscillations of the body [24, 25].

Let us repeat the above analysis in a reference frame in which the fluid

is at rest at infinity. The kinetic energy is now
1 3 1 _119g4% V2 33
J; 2povf,d X + JV 2po(u UjV¢j) d’x.

The second integral is the reversible, added mass component of the energy,
which is equal to %Aij(uz-Ug)(ug-Ug). The force between the fluid and body is
still given by equation (5), but the velocity of translation of the body is
equal to -U°+u®, so that the rate of working of the surface force is
Fj(u?—U?). Evaluation of this using (5), leads to the following alternative

energy equation

Ok Q= -p ul|, wAv_eVX d’x + nus |, wAVX, edS
it pojV rel J an J
3 o
+ pojv wAv;ﬂfUd X - ntJs wAVXdeS, (8)
where E = v%povidax is the kinetic energy of the vortex field alone

(hereafter referred to as the "vortex kinetic energy"). Equations (7) and (8)
correspond to alternative views of the motion. If the body does not vibrate
(w®* =0), E + ftht is constant, and mean flow kinetic energy is transformed

into vortex energy and thence dissipated by viscosity.
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By subtracting equations (7) and (8), the variable mean "flow energy"

E, = E - E, is found to satisfy

6ES 3 e}

7t = - pko wAv;ded X + ntJS wAVXdeS, (9a)
= o
= FiUi. (9b)

Since the component of -F in the direction of the uniform mean flow U° is the
drag experienced by the body, equation (9) equates the rate of change of the
mean flow kinetic energy to minus the rate of working of the drag force. For
a body at rest in a uniform stream, the kinetic energy lost by the mean flow
in this way is transformed into vortical energy and dissipated by viscosity.
For a vibrating body the drag force can be negative; the body experiences a
force opposite to the mean flow direction and proceeds to "swim" against the
stream. The energy transferred to the fluid goes into the wake and into

accelerating the mean flow [26].

2.2 An arbitrary elastic body in low Mach number compressible flow

In a compressible fluid there can be a transfer of energy from structural
motions into both sound and the kinetic energy of the flow. This can be
important if sound waves are incident on the body, or when it is necessary to
consider the production of aerodynamic sound by surface motions and vorticity.

We shall consider low Mach number motions and write the velocity in the form
v=U+u+ v + Vp, where neu = neu’, neVp = 0 on S. (10)

U, u and v, are defined as before, on the assumption that the motion is
incompressible, and the velocity potential ¢ is taken to account for the whole
effect of compressibility. For an elastic body the surface velocity u® will
generally vary with ﬁosition on S. In a nonuniform mean flow, the velocity
field U can be assumed to be incompressible when M?> < 1, where M = U°/co is
the free stream Mach number, c, being the speed of sound (which can also be

regarded as uniform throughout the fluid when M < 1).
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An equation describing the production of the kinetic energy
E = fv%po(U+vb)2d3x of the mean flow and vorticity can be derived from the

momentum equation taken in the form

= -p wAv - neurle , (11)

a3 1 Y dop
5P (U+v ) + V[p + Epovz * Poat + p°8_t]
where (for M? < 1) the mean density P, is constant, and  denotes the velocity
potential of incompressible flow produced by oscillatory motion of the body in
an ideal fluid (so that u = V¢). Dissipation terms proportional to ndivv and

those associated with the bulk viscosity of the fluid have been neglected.

The scalar product of equation (11) with U+v can be written

J [ 2 . 1 Y dop
E;(Epo (U+Vw) ] + dlv[(U+vw)|:p + Epov2 + p°'a_t + p°6—t]] = powAV'(VI/)+V<p)

- n(U+vb)°curlw. (12)

The argument of the divergence on the left hand side may be interpreted as the
flux of the kinetic energy of the mean flow and vorticity when convection by
sound and unsteady surface motions is neglected. In irrotational regions it
reduces exactly to the energy flux vector -po(U+vb)6¢/6t, where & is the
velocity potential with contributions from unsteady surface motion and sound

excluded [27].

The rate of production of mean flow and vortex kinetic energy is obtained
by integrating equation (12) over the volume V. The motion of the surface S-

of the body is accounted for by recalling that
3 (1 2] 43 g 1 233 1 2.0
Jv 5E[Epo(U+vb) Jd X = 3elv Epo(U+v;) d’x + Js Epo(U+v;) u’ eds
If Q is the viscous dissipation calculated as for an incompressible fluid (as

in (6) but with v defined by (10)), equation (12) then yields

i Q- J WA (U+Y, ) o (V) + Vp)d’x - 3 J (U+v )?uC eds
é_t- - pO v w <p ZPO s w

+ nJS [w/\(U+vw) - 2(11°°V)V]'d5- (13)
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' When the viscous term on the right hand side of this formula is discarded, and
the surface is at rest (u° = 0), this equation reduces to one given previously
in [7, 12]. However, for a moving surface the second, surface integral on the

right hand side of (13) was mistakenly omitted from the corresponding equation

(2.5) of [12].

For a rigid body u® is constant on S, ¥ = u§¢;, and the identity

a/ax, (2v?) = 8/0%, (v,v)) - (@Av);, v = TV, (div v = 0)

can be used to show that

%pon (U+vb)zu?0ds = pougjva(U+vb)°ijd3x.
Thus, when small dissipative terms of order ndiv v are again discarded, so
that §S(u°0V)v0dS = 0, (13) becomes

JE
— + Q= -p u?JV wAv;ﬂfVdeax + nugjs wAVXj'dS

+ pojv wAv;deWdax - an wAVpedS, (14)
where

o
= v -
vrel u

o]
U - uJ.VXj + v, o+ Veo. (15)

Equation (14) is the generalization to low Mach number compressible flow of

equation (7).

The corresponding equations for the vortex kinetic energy E/ is obtained

by taking the scalar product of (11) with v . This gives

9k,

- +Q = po‘[v w/\v@O{U+V1,b+V<p}d3x - %pojs Viu°°dS

+nfy [onv, - 200 00)v]eas. (16)

For a rigid body this simplifies to
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aEw o 3 o
=+ q - -poujjv WAV, oV, dx + nujjs WAVX, *dS

+ poUgjv WAV, *VX, d®x - ntJ's WAVX, *dS

+ pko wAv;ﬂfV¢d3x - njs wAVeedS (17)

When this is subtracted from (14), the rate of production of mean stream

kinetic energy Es =E - Ew is found to be given by (9a), with v;d_defined as

in (15).

A particular form of the rigid body formulae (14) and (17) arises when S
is acoustically compact, i.e., when the characteristic wavelength X of sound
waves involved in the motion is much larger than the typical body dimension £,
say. The generation of sound by the unsteady flow near the body can then
usually be neglected, and the principal contribution to the compressible
velocity potential ¢ is from sound waves incident from remote sources. In a
first approximation (correct to the neglect of terms -~ O{(Z/A)z}) the behavior
of ¢ near S is given by

o(x,t) = o(x ,t) + X, d0(x ,t)/0x,,
where X~ may be taken as the center of volume of S. Equations (14), (15) and
(17) then imply that the production of kinetic energy proceeds as in an
incompressible fluid provided the vibrational velocity u° of the body is
increased by -aw(xo,t)/axj, i.e., by an amount which is equal and opposite to

the acoustic particle velocity of the sound incident on S.
2.3 Small amplitude vibrations of elastic plates in parallel mean flow

The surface velocity u® cannot normally be assumed to be independent of
position on S when the body is elastic, and it is not then possible to reduce
the energy equation (13) to the simplified form (14). An important special
case, however, occurs when all fluctuating quantities are small and the
viscous term on the fight of (13) may be discarded. The surface integral
involving the shear viscosity n is negligible when the Reynolds number
U°£po/n > 1, where £ is the length scale of the unsteady motions near S. In
making this approximation observe that, although viscosity is ultimately

responsible for the diffusion of vorticity into flow, this fact has no bearing
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on the relative magnitudes of the integrals in (13).

Consider interactions and vorticity production in the neighborhood of one
or more thin elastic plates in high Reynoids number parallel mean flow at
velocity U°. When all fluctuating quantities, including the vorticity w, can
be regarded as small perturbations, the leading order approximation to the

terms on the right of (13) (omitting contributions of zero mean) is
pOJ'V WAL o (Vi + Vp)d®x - pOJS (W ov_ )Vieds.

These integrals can be combined by introducing the bound vorticity w, say, on
the surfaces of the plates. This is done when there is only one plate as
follows. Let the equation ¢(x,t) = 0 define a surface in the fluid that just
encloses the plate, where ¢ > 0 in the exterior fluid. Define the extended
vorticity @ by

H({)w + VH({)AV;

H({)w + nAvQé(xn), (18)

Q = curl{H({)v,}

fi

where H(x) is the Heaviside step function, and X is a local coordinate which
vanishes on the plate and is orientated in the direction of the unit normal n.
The bound vorticity w = nAvbé(xn). Recalling that neVp = 0 on S, (13) is now

reduced to
JE

T pof QAU® o (V3 + Vo)d’x, (19)

where the integration is taken over the whole of space. It is evident that

this result is applicable to situations involving multiple parallel plates.

Similarly, since U° is constant and nev = 0 on S, the vortex and mean

stream energy equations become, in the same approximation,

JdE
EEW +Q = pko wAvw'U°d3x = -pOJ QAU°0v§d3x, (20)
%8s _ J' QAU® o (Vi + Vo + v )d3x (21)
3t Po ¢ w )
Equations (19) - (21) remain valid to second order for stationary surfaces.

In that case, however, V¥ = 0, and the integrations need be taken only over

the free field vorticity.
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3. APPLICATIONS TO RIGID AND ELASTIC PLATES

3.1 The rigid airfoil

A rigid, two dimensional, flat airfoil of chord 2a is set at zero angle
of attack to an incompressible, high Reynolds number mean flow of velocity U
in the x -direction. In the undisturbed state the airfoil occupies the region

Ix,| <a, x, =0, of the rectangular coordinate system (x,,X,,X,). The
airfoil executes small amplitude time-harmonic, translational oscillations at
velocity u® = (O,uZ,O)e_i“’t in the x,-direction (where the real part is to be
taken, and the harmonic time factor is henceforth suppressed), as indicated in
Figure 2(a). Viscous forces are neglected except at the trailing edge, where
vorticity is shed into a wake of infinitesimal thickness, in accordance with
the Kutta condition of thin airfoil theory. Then w = (0,0,wa), where [28]

w, = 7OH(xl—a)6(xz)e1KX1, v, = 4iu2/{Hg”(na)+iH§“(na)), (22)

Hé”, H;D are Hankel functions [29], and k = w/U is the wavenumber of the wake
vorticity. In high Reynolds number flow the power II = JE/3t + Q fed into the
mean flow and wake per unit span of the airfoil is given by the first integral
in (7) with j = 2 and the integration over x, omitted. To evaluate the
integral correct to second order in the amplitude u, of the oscillations, we

can set v . = (U,0,0) and

X2 = Re{-iVz2-a2}, z = x1+ix2 (23)
[21]. After taking the real parts of all fluctuating quantities and averaging

over the period 2n/w of the motion, we find
o= nCRpoaUluzlz, (24)
where G, = C_(ka) is the real part of the Theodorsen function
C(x) = iH;“(x)/{Hé”(x)+iH§D(x)). (25)

C; is positive for all real frequencies, so that the motion is always stable

inasmuch as energy is always drawn from the oscillating body and ceded to the

fluid [24].
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A similar calculation shows that the power delivered to the wake per unit
span 1is

2 .
2p_aU|u, |

I = 26
" (ka) |HP(ka)+iH{V (ka) | 2 (26)

The difference II; = II - I, represents the power absorbed directly by the mean
stream. This is positive and arises from the working against the mean stream
of the suction force at the leading edge (which is not balanced by an equal
and opposite force at the trailing edge because of the application of the
Kutta condition). The airfoil accordingly has a tendency to "swim" against
the mean stream under the action of a propulsive force equal to I, /U (see [26]
and the references cited therein for an extensive discussion of problems of

this type relating to aquatic propulsion, etc).

When the characteristic wavelength of the vortex wake is much smaller
than the airfoil chord, i.e., when the reduced frequency ka > @, it follows by
use of the asymptotic formulae for the Hankel functions in (25) and (26) that,

- 1 2
Hw = HS = aﬂpoaU|u2| as ka > o, (27)

so that the power absorbed by the flow is ultimately shared equally by the
mean flow and wake. At low frequencies, however, Hw ~ 0(ka)Il, and the energy

flows primarily into the mean stream.

A similar calculation can be performed for the case of a sound wave
incident on the airfoil in mean flow of Mach number M = U/cO < 1, when the
chord is acoustically compact (wavelength of the sound » airfoil chord). In
these circumstances it is permissible to neglect the convection of sound by
the flow, and we may consider an incident, time-harmonic plane acoustic wave

whose pressure is given by

p = pIeino(xlcosﬂ + xzsinﬂ), (28)

where p, is constant, sk = w/co is the acoustic wavenumber and § is the

propagation direction measured from the positive xl-axis (see Figure 2(b)).
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Assume the airfoil to be fixed. For a compact airfoil x a is small, and
the velocity potential of the acoustic field near the airfoil can be

approximated by

ip

0= ;[1 + ik x, cosf +inoxzsin0], (29)
o
where X, is given by (23). The wake vorticity is again given by equations

(22) with u, replaced by —pIsinﬁ/pDco. Using these results in (14) and (17)
(in which only the volume integrals involving ¢ are retained), we find,

correct to second order,

I () ‘6 I, 2Msind 30y
— = nC_(ka)Msinf , — = , (
I R I (ka) |HY (ka)+iH P (ka) |2
I I 0 1
where Il = |pI|2asint9/poco is the acoustic power incident on unit span of the

plate. At high reduced frequencies the absorbed sound power is shared equally
between the wake and mean stream, but as ka > 0, the wake power becomes
negligible relative to that ceded to the mean stream. As in the case of the
vibrating plate, the sound induces a leading edge suction force and a tendency

for the plate to be propelled against the stream.

The interaction of sound with the trailing edge of a stationary rigid
airfoil whose chord is much larger than the acoustic wavelength (kx a > 1) can
also be investigated in this way [12, 30]. When the airfoil is modeled by a
semi-infinite rigid plate in flow of infinitesimal mean flow Mach number, and
the incident wave is defined as in (28), the acoustic power dissipated per
unit span of the trailing edge is [12]

_ 2|P1|2M

i cosz(g), M<l. (31)

o

In this limit it is again found that I, = I, i.e., that the dissipated
acoustic power is shared equally by the wake and mean flow, but this relation

is not maintained at higher Mach numbers (see [12] for details).
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3.2 Damping of bending waves on a large plate

Vortex shedding from the trailing edge of a thin elastic plate is
probably the simplest model problem for studying the exchanges of energy which
occur when a vibrating elastic structure interacts with mean flow. Small
amplitude flexural motions of the plate are governed by the linearized bending
wave equation [20], and the canonical structural vibration problem is that in
which a bending wave impinges normally on the edge. Part of the incident wave
energy is reflected, part is transformed into kinetic energy of the mean flow
and wake and, for a compressible fluid, part is scattered into sound. A
linearized analysis of these events is discussed in [17] for a plate that is

immersed in a mean flow of infinitesimal Mach number flow.

Let a thin, semi-infinite elastic plate of bending stiffness B and mass m
per unit area occupy the half-plane x, < 0, x, =0, in fluid in uniform motion
at speed U (where M = U/c_ < 1) in the positive xl-direction (Figure 3).
Time-harmonic flexural displacements §(x1)e_“m (w > 0) of the plate (measured

in the xz-direction) satisfy the bending wave equation [20],
(B3*/ax! - mo )¢ = p(x,,-0) - p(x,,+0), % <O, (32)

where p(xl,xz) denotes pressure, and the terms on the right hand side give the
net normal stress on the plate (here and henceforth the harmonic time factor
et is suppressed). The displacement and the pressure are also related by
the x, -component of the fluid momentum equation po{w+iU6/ax1}2§ = dp/d%,, X, =

0.

A steady state bending wave { = §0e1“+xl propagating towards the edge has
subsonic phase velocity w/x, (< c_) and the structural motion is accompanied

by a traveling pressure field that decays exponentially with distance from the

plate . 7
P = -sgn(xz)po{(w-Un+)2/an—n§}§oeln+X1' Kf-”glle. (33)

provided the Mach number is sufficiently small that convection of sound by the

flow can be neglected

It follows from (32) that &, is the positive real root of the dispersion

equation
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D(k,w) = Bk'-mw?-2p_(w-Uk)?/VkZ-xZ = 0. (34)

A reflected bending wave { = Rgoe'in-xl emerges from the localized,
complex fluid-structure interaction at the edge and propagates without
attenuation to X; = -®. The reflection coefficient R is a function of
frequency, Mach number M, and the mechanical constraints imposed on the motion
of the plate at the edge; k_ is the positive root of (34) when the sign of U
is reversed. In addition, sound is generated, and vorticity is shed into a
wake extending downstream from the edge. The strength of the shed vorticity
can be estimated by application of the unsteady Kutta condition. The analysis
of this problem in [17] is based on linear perturbation theory, in which the

wake is treated as a vortex sheet.

The flexural wave power I, say, incident on unit length of the edge
(including that conveyed in the evanescent fluid motions on both sides of the
plate) can be calculated from the formula I, = %w[{olzaD/ak, where the
derivative is evaluated at k = &, [31]. The total flexural wave power
dissipated per unit length of edge consists of a portion II, scattered into
sound and a component I, which increases the kinetic energy of the mean flow

and wake. The total dissipated power is therefore given by
n, + 1 - ol 2] (Go0e )] 2 (ko) ] (35)
= ;7w A ’ = 1 ’ .
A x ~a?l% ok k=x, ok k=K _

Using formulae given in [17], the fractional power dissipated at the
edge, A = {HA+HK}/HI, has been plotted in Figure 4(a) for a steel plate in
water for several values of the Mach number when the edge of the plate is
"free" (62§/6x§ = aag/axi =0 at X, = -0 [20]). In this figure the frequency
is normalized by the coincidence frequency w, = ci(m/B)”z, above which the in

vacuo bending wave phase speed exceeds c, -

For M = 0 all of the dissipation of bending wave power can be attributed
to sound radiated from the edge. When M = 0 there is a significant increase
in the bending wave power loss at low frequencies caused by the transfer of
energy to the mean flow and wake, with negligible changes in the radiated

sound power (at least for M < 1). This is clear from Figure 4(b), which
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compares the total power loss A for a steel plate in water (solid curve) with
the acoustic power (dashed curve) when M = 0.01. Inspection of Figures 4(a)
and (b) confirms that the sound power is hardly influenced by the flow.
However, at high frequencies dissipation is caused entirely by the radiation
of sound; this is because, as w > w_, bending wave energy is contained
principally in the evanescent motions on either side of the plate, and

propagates with negligible plate motion at a velocity which is only slightly

less than the speed of sound.

The dotted curve in Figure 4(b) shows the fraction of the dissipated
energy which appears as vortex kinetic energy. This indicates that, over the
range of frequencies within which acoustic dissipation is negligible, the
dissipated energy is shared equally between the mean flow (E;) and the vortex
motions (E_); this is not generally the case, but depends on the nature of
mechanical constraints at the edge. The momentum of the mean flow increases
at a rate equal to HS/U, so that the plate experiences an equal and opposite

thrust and a tendency to swim against the mean stream.
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4. DAMPING OF FLEXURAL WAVES ON A GRAZING FLOW PERFORATED SCREEN

Perforated screens have been used to attenuate sound in low Mach number
flows. The flow is usually turbulent, and typically the sound is generated by
the interaction of the mean flow and turbulence with solid bodies, such as the
cross-tubes in a flow-through heat exchanger. Vér [10, 13] has described the
use of grazing flow perforated plates in the tube bank cavity of a nuclear
reactor heat exchanger that successfully eliminated acoustic resonances which
had not responded to more conventional means of attenuation. Acoustic
attenuation by this means is useful only when the dominant frequencies are
small. At higher frequencies boundary layer turbulence (which is enhanced by
flow over the perforations) can interact strongly with the apertures to
produce intense sound (and vibration) [32]. Analytical studies [33 - 35]
suggest that boundary layer generated noise is increased by several orders of

magnitude by the presence of the apertures.
4.1 Modified bending wave equation

The attenuation of low frequency sound and structural vibrations by a
grazing flow perforated plate can be estimated by a simple extension of the
method developed in [18] for a bias flow screen. A generalized form of the
bending wave equation (32) was derived in [18] for a plate with circular
apertures when the length scale of the sound and plate motion is large
compared to both the aperture radius R and the distance between neighboring
apertures. For an infinite, thin elastic plate, with N apertures per unit
area, and occupying the plane x, = 0 in the undisturbed state, long

wavelength, small amplitude motions (proportional to e 1%y are governed by the

equation

[[1 - (_i%]sv‘z‘ - mwz]g + [1 + 2NRKR[1 - 5%0702([1 - %]Bv; - mwz]]][P] = 0.

(36)

where a = NmR? is the fractional open area, o is Poisson’s ratio for the

plate, Vg (82/6x§+32/axg)zl and KR is the Rayleigh conductivity.
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The conductivity determines the volume flux Q, say, through an aperture
caused by a long wavelength perturbation [p] = p(x1,+0,x3) -p(xl,-O,xs) in the

pressure difference across the plate according to the relation

Q = K [pl/ip 0. (37)
This definition is a generalization of that originally proposed by Rayleigh
[36, 37] in terms of the electrical analogue Q = K [®], where ® is the
perturbation velocity potential, and the motion is imagined to be driven by
the potential difference [®] across the aperture. In more general situations,
however, where the flow in an aperture can contain vorticity, local variations
in the velocity potential need not be continuous through the aperture and

Rayleigh’s definition must be expressed in terms of the pressure (which is

continuous) .

It was argued in [18] that Ky is well approximated by its value for a
rigid plate provided the length scale of the plate motion is much larger than
the aperture radius R. K; has the dimensions of length and is equal to 2R in
a stationary ideal fluid, but becomes complex valued and frequency dependent
in the presence of flow, because of the unsteady shedding of vorticity from

the aperture edges.

We consider the application of equation (36) to the case in which the low
Mach number mean flow is tangential to the plate at uniform speed U in the
xl-direction on both sides (Figure 5), and where the Reynolds number based on
aperture radius is large. In the linearized approximation the pressure p and
velocity potential & are then related by p = p_(iw - Ua/ox,)e®. The
conductivity is a function of the Strouhal number S = wR/U, and can be set in

the form

K, = 2R{T(S) - 1iA(S)). (38)

The real and imaginary parts T and A are not known in analytic form, but
have been computed by Scott [38] for high Reynolds number flow. Scott applied
linear perturbation theory and the unsteady Kutta condition to determine the
strength of vorticity shed from the upstream semi-circular arc of the aperture
as a result of the unsteady aperture flow; the vorticity was assumed to occupy

a vortex sheet in the plane of the aperture and to convect downstream at the
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mean velocity U.

The calculated dependencies of T and A on Strouhal number are depicted in
Figure 6. T and A are approximately periddic (with period = m) when wR/U
exceeds about 3. The imaginary component A governs the damping of aperture
motions by vorticity production and acoustic radiation losses. The latter can
be neglected when x R 1is small, so that the value of A then determines the
exchange of perturbation energy with the mean flow; aperture motions are
damped by vorticity production provided A > 0; when A < 0, the unsteady motion
in the aperture is enhanced at the expense of mean stream kinetic energy.

This extraction of energy from the flow is caused by the interaction of shed
vorticity with the semi-circular "leading edge" on which it impinges after
convecting across the aperture. The aperture motion should not be regarded as
unstable, however, since the transfer of energy from the mean flow occurs only
when an incident disturbance contains a component with frequency within an
interval where Ay < 0. This means that, in the absence of an incident
pressure differential [p] (and on the basis linear theory), large amplitude,
unsteady motions within the aperture cannot arise spontaneously as a result of
a random fluctuation in the mean flow; mathematically this conclusion follows
from the fact that the Rayleigh conductivity K (w) for this problem can be
shown to be a regular function of w in the upper half of the complex frequency

plane.

4.2 Attenuation of resonant bending waves

To examine the damping of bending waves consider a time harmonic
displacement { = §°ei(nxl'wt) (w > 0); from (33) we have
[p] = -2p, ((0-Uk)2 VRZ-RZ ), M5,
The flexural wave dispersion equation is obtained by substituting these

expressions for { and [p] into equation (36), which supplies

D(k,w) = [l - (i?Z)]B&A - mw?
el e a1 - ([ et - w)]) -0 oo

When there is no mean flow KR » 2R, and D(x,w) has two real zeros of
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opposite sign that correspond to undamped flexural waves propagating in the
positive and negative x, -directions. They satisfy |k] > k_, so that VEETEE is
real and positive. In the presence of flow the bending wavenumber acquires a
small imaginary component that accounts for the exchange of wave energy with
the flow via vorticity production. The wave power dissipated in propagating a
distance 6s is equal to 20]Im{n)|6s£oglo(e) dB, and the power absorbed per
wavelength of propagation is therefore QOwﬁogio(e)Im{n}/Re{n} =
54.6Im{k}/Re{k} dB. Figures 7 - 9 illustrate typical predictions of the
absorption for a perforated steel plate in water at different fractional open
areas a and aperture radii (for R/h = 3 and 6, where h is the thickness of the
plate) and mean flow velocities. The solid and dashed curves are respectively
for waves propagating in the ixl-direction, i.e., with and against the mean
stream. The case of a lightly fluid loaded plate is illustrated in Figure 10
(aluminium in air: R/h = 10, U = 10 m/s). The ability of the bending wave
motions to force fluid through the apertures is now much reduced, and the
maximum losses are correspondingly very much smaller than for a plate in
water. Waves propagating against the mean flow are more strongly damped than
those propagating in the mean flow direction. Increases in flow velocity or

aperture radius reduce the maximum possible attenuation. In all case, waves

can experience small negative damping when wR/U > 3.

To assess the significance of these predictions, it should be noted that
the largest attenuations usually achieved by conventional means, i.e., by
coating a nominally homogeneous plate with one or more layers of an absorptive
material, are of the order of 4 dB per wavelength of propagation [19]. The
present results are accordingly comparable with the best obtainable by '
coating, at least for Strouhal numbers in the interval 0.7 - 2. However,

conventional coating materials tend to be effective over a much broader range

of frequencies.
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5. CONCLUSION

Energy is transferred between structural and acoustic vibrations and the
kinetic energy of essentially incompressible fluid motions by vorticity
production at the surface of a solid. In many instances this can lead to
unstable and catastrophic structural motions and the generation of intense
acoustic noise, but there exist regimes in which vibrational and/or acoustic
modes may be dissipated through the generation of vorticity. This energy
transfer mechanism has been discussed for elementary rigid body vibrations of
a solid in low Mach number flow, and the effects 6f structural and acoustic
damping have been illustrated by reference to the classical problem of the
vibrating airfoil. At low Mach numbers the dissipated energy appears first as
an increase in the kinetic energy of the mean flow and wake before being
ultimately dissipated by viscosity. Modified versions of these formulae are
applicable also to vibration problems involving parallel flat plates in a mean
flow, but such problems are usually so complicated that it is generally easier
to make direct predictions of the energy distribution from the analytical
solution. The simplest problem of this kind involves the generation of
vorticity at the trailing edge of a large, vibrating elastic plate in a
nominally uniform mean flow. At low Mach numbers energy is dissipated both by
the generation of sound and by the conversion of plate energy into kinetic
energy of the flow. At low frequencies (well below the coincidence frequency)
most of the dissipated energy is ceded to the flow, but as the frequency
increases towards coincidence the damping is progressively dominated by

acoustic radiation.

The exploitation of vorticity production in the apertures of a perforated
elastic plate for vibration damping has been examined for low Mach number,
two-sided grazing mean flow. As in the case of the "bias flow" screen
discussed in [18], the efficiency with which bending waves are damped
increases with the fluid loading. The attenuation experienced by waves on a
perforated steel plate in water is significant for aperture Strouhal numbers S
= wR/U in the range 0.7 - 2, and can exceed that usually obtained when an

unperforated plate is heavily coated with damping material.
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Figure 1. A rigid body in oscillatory motion in an incompressible fluid

in uniform mean flow at velocity U°.
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Figure 2. (a) Rigid airfoil vibrating in a mean stream.

(b) Sound incident on a stationary airfoil in a mean stream.
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Figure 3. Flexural vibrations near the trailing edge of a large plate in

uniform mean flow.
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(a) Fractional power A dissipated when a bending wave is reflected
at the freely vibrating trailing edge of a steel plate in water at
various mean flow Mach numbers.

(b) Comparison of A ( ) and HA/III (- - -~ —-) when M = 0.01.
dotted curve is the fractional vortex power II /II .
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Figure 5. Schematic grazing flow perforated elastic plate.
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Figure 6. The Rayleigh conductivity of a circular aperture in uniform,

two-sided grazing mean flow.
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Flexural wave power dissipated per wavelength of propagation on a
perforated steel plate in water for different values of the

fractional open area @, and for R/h = aperture radius/plate

thickness = 3, U = 5 m/s: , wave propagating in the mean
stream direction; — — — —, wave propagating against the mean
stream.

73




Report No. AM-96-006 Boston University, College of Engineering

| Illlllll I I IR

Pl Steel/Water
3 / \NRMh=3,U=15m/s _

Power absorbed per wavelength (dB)

Figure 8. As for Figure 7 with U = 15 m/s.
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Figure 9. As for Figure 7 with R/h = 6, U=5m/s.
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Figure 10. Flexural wave power dissipated per wavelength of propagation on a

perforated aluminium plate in air for different values of the

fractional open area @, and for R/h = 10, U =10 m/s: , wave
propagating in the mean stream direction; — — — —, wave propagating

against the mean stream.
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CHAPTER 3

THE INFLUENCE OF TANGENTIAL MEAN FLOW ON THE
RAYLEIGH CONDUCTIVITY OF AN APERTURE
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SUMMARY

An investigation is made of the influence of grazing mean flow on the
Rayleigh conductivity of an aperture in a thin rigid plane. The fluid is
assumed to be incompressible and inviscid, but the Kutta condition is applied
to permit the generation of vorticity at the edge of the aperture by an
applied time-varying pressure field. Numerical results are given for a
circular aperture in the two cases of (i) one-sided mean flow, when the
aperture is spanned by a plane vortex sheet in the undisturbed state, and (ii)

two-sided mean flow, when the mean velocity is the same on both sides of the

plane, so that the undisturbed motion is irrotational. 1In both cases there
exist frequency ranges within which perturbation energy is either absorbed or
generated by the mean flow. The numerical results are supplemented by an
approximate analytical treatment of the same problem for a rectangular
aperture of large aspect ratio (with its long edge transverse to the mean flow
direction). The aperture flux for one-sided flow is shown to be absolutely
unstable, and may in principle be triggered by an arbitrary, small disturbance
in the mean stream. For two-sided flow the motion is conditionally unstable,
in the sense that perturbations are amplified by the extraction of energy from
the mean flow only when the frequency of the applied pressure lies in certain

discrete bands.
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1. INTRODUCTION

Consider the unsteady flow of fluid through an aperture of area A in a
rigid plane of negligible thickness produced by a uniform, time-harmonic
pressure load [p] = (p+-p_)e'i“’t (w > 0) applied across the plane. The
"upper" and "lower" faces of the plane are taken to coincide respectively with
surfaces z = 20 of the coordinate plane z = 0 of the rectangular system
(x,y,z), and p,_, p_ are the respective amplitudes of the applied pressures
above and below the plane. The induced motion through the aperture is assumed
to be incompressible and to be governed by the linearized equations of motion.
Let Q denote volume flux through the plane (in the positive z-direction),
where here and henceforth the exponential time factor e 10t jg suppressed.
Then the Rayleigh conductivity K, of the aperture is defined by (Rayleigh
1870, 1945) ’

Ky = 1wp,Q/(p,-P.), (1.1)
where p, denotes the density of the fluid.

The pressure varies continuously through the aperture, and p, are its
limiting values at large distances (> VA) on either side. When there is no
mean flow, and the motion at large distances can be regarded as irrotational,

the definition (1.1) is equivalent to

K, = /e, -0), (1.2)

where ¢, are the uniform velocity potentials above and below the plane,
determined by p, = -poawt/at. This form of the definition is analogous to
Ohm’s law in electricity. Conductivity has the dimensions of length; for
example, it is equal to 2R for a circular aperture of radius R in an ideal,

stationary fluid.

For an ideal, inviscid fluid, KR is real and the motion through the
aperture is entirely irrotational and conservative. In practice, however,
viscous action causes dissipation, and the dissipated power II, say, is given

in terms of [p] and the normal component v of fluid velocity at z = 0 by

n = -7 (lplv,)dxdy,
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where the angle brackets denote a time average, and the real parts of [pl, v,

are to be taken after restoration of the time factor e 19t Tt follows that

I = -3Im(Ky )| [p]1%/p,0, (1.3)

and therefore that energy is dissipated provided the imaginary part of K, is

negative.

The dissipation is frequently enhanced for certain frequencies by the
presence of a high Reynolds number mean tangential flow over the aperture or a
"bias" flow through the plane (Bechert 1979j Crighton 1981), and perforated
screens have been deployed in mean flow environments to eliminate harmful
acoustic resonances (for example, in heat exchanger cavities (Vér 1990)). For
a bias flow screen with circular apertures, the dissipation can be estimated
from (1.3) by use of an approximate formula for K given by Howe (1979), which
has been validated experimentally by Hughes & Dowling (1990). The mean flow
is maintained by a steady pressure differential across the screen. If U is
the average velocity within an aperture, and UWA/v » 1, the motion will be
uninfluenced by viscosity except in the immediate vicinity of the aperture
edge, where the flow separates to form a jet. The undisturbed motion is no
longer irrotational, and a superimposed, fluctuating pressure [p] causes
additional vorticity to be generated, which is then swept away in the jet.

The energy required to produce this vorticity is supplied by the applied
pressure [p], and dissipation occurs by its transfer to the kinetic energy of

the jet.

In this paper we consider the determination of K  for an aperture in the
presence of a tangential mean flow. When the mean velocities are at speeds
U,, U_ above and below the plane (see Figure 1) and the Reynolds number is
large, the undisturbed mean shear layer in the aperture can be approximated by
a vortex sheet. The sheet is deformed by a small amplitude applied pressure
[p], and additional vorticity is shed from the upstream edge of the aperture.
However, because the vortex sheet is unstable (Lamb 1932), perturbation energy
may be expected to be either created or absorbed by the interaction, depending
on the frequency w of the applied pressure. This problem was examined by Howe
(1980), who obtained high and low frequency approximations for K, for a

circular aperture when U = U_, so that the undisturbed motion may be regarded
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I

as irrotational. The applied pressure was assumed to induce separation from
the upstream semi-circular edge of the aperture in the form of a thin vortex
sheet, the strength of which was set by the Kutta condition (Crighton 1985),
and it was concluded that Im{KR} < 0 for all w. We shall argue below (§2)
that Howe's (1980) solution is erroneous, because proper account was not taken

of conditions at the downstream edge of the aperture.

The tangential flow problem is formulated in §2, and solved numerically
for a circular aperture for the two cases of (i) one-sided mean flow, when the
fluid is at rest on one side of the plane in the undisturbed state, and (ii)
two-sided flow at the same velocity on both sides. The problem is amenable to
approximate analytical treatment for a rectangular aperture of large aspect
ratio, orientated with its long edges perpendicular to the mean flow
direction. This is discussed in §3, and comparison made with the numerical
results. In all cases there exist frequency ranges where Im{K; } > 0, within
which perturbation energy is extracted from the mean flow. For both the
circular and rectangular apertures we show in case (ii), for which the
undisturbed motion is irrotational, that the motion is conditionally unstable
(§4), i.e., that energy is extracted from the mean flow only when [p] = 0; in
case (i), on the other hand, the motion is absolutely unstable, and an

arbitrarily small disturbance can trigger the release of mean flow kinetic

energy.

A brief discussion is given in the Appendix of the generalized Rayleigh
conductivity KR(k,w), which is defined as in (1.1), but for an applied
pressure [p] = poei(k.x'wt), where p_ is constant and k is an arbitrary
"trace-wavenumber" parallel to plane. Rayleigh’s (1870) definition
corresponds to KR(O,w). The reverse flow reciprocal theorem (Howe 1975;
Méhring 1979), extended to problems involving vortex sheets, can be invoked to

express KR(k,w) in terms of the vortex sheet displacement in the reverse flow

problem for k = O.
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2. CIRCULAR APERTURE WITH A GRAZING MEAN FLOW

2.1 The vortex sheet model

Consider incompressible, uniform mean flows over the upper and lower
surfaces of the rigid plane z =0 whiéh is pierced by a circular aperture of
radius R whose center is at the coordinate origin. Let the mean velocities be
at speeds U, in the x-direction respectively in z Z 0, as in Figure 1. The
Reynolds number is assumed to be sufficiently large that viscosity can be
neglected except for its role in generating vorticity at sharp édges. In the

steady state, when U_ = U_, the aperture is spanned by a vortex sheet.

When the plane is subject to a small amplitude, time harmonic pressure
load [p] = p,-p_, the velocity potentials ¢, (x) of the unsteady motion above

and below the plane may be expressed in the form (Lamb 1932)

71 © v, (x',y")

- d.X’d’ r 3 ’,0’ 21
7 ) T ixx y', X x’,y",0) (2.1)

®, (%)

where v, is the z-component of velocity as z -» %0, which vanishes on the plane
except at the aperture. In the linearized approximation, the z-component of
displacement {(x,y) of fluid particles initially lying just above or below the
plane (z = #0) vanishes outside the aperture, and equals the displacement of

the vortex sheet within the aperture. Thus

v, (x,y) = (8/3t + U,3/9x)¢ = -i(w + 1U,8/8%)¢, (2.2)
and integration by parts permits (2.1) to be cast in the form

+i . c(x’,y")
X) = —|w + U—] — dx’dy’ , 2.3
e, (%) Zﬂ[w 10,220 )s x| y (2.3)

where the final integration may be restricted to the area S occupied by
aperture provided ¢ - O(l/|X|a), a < 1, near the aperture edge, where X

denotes distance from the edge.

The volume flux Q through the aperture is needed to calculate the

conductivity K from the definition (1.1). This is given by
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Q = J “i(w + 1U,3/8%)¢ dxdy = -inS ¢ (x,y)dxdy. (2.4)

- 00

The equation determining ¢{(x,y) in terms of [p] is obtained from the
condition that the pressures just above and below the vortex sheet must be
equal. The linearized Bernoulli equétion supplies the perturbation pressure
in the form '

p, + ip, (w+iU 3/8x)p,, (2 20).

Continuity of pressure across the vortex sheet therefore requires that

2 2

[[w+iU+g—J + [w+iU_§_J ] S SEELLZLl dx’dy’ = (P+-p_)/p0,

b ox 2w |x-x’ |
for z = 0, (x%2+y®)Y2 <R, (2.5)

Integrating with respect to the second order differential operator on the left

hand side, we find (for constant (p+-p_)/p0)

Z(&’,n’)d&’dn’

=1 io, € io, ¢ ’ 24p2yl/2 ¢ 1 w
S T irmonyzy LT emerit e (metier (5T (2.6)

where Z = {pOwZR/ﬂ(p+-p_))§ is the displacement in dimensionless form,
¢ = x/R, n = y/R, etc (so that the integration is over the unit disk
(¢$’2+17’z)1/2 < 1), and o, and o, are the dimensionless Kelvin-Helmholtz
wavenumbers of instability waves on the vortex sheet (Lamb 1932)
wR(1+1i) wR(1-1)
DT gaws 2T (2.7)
+ - + -

The amplitudes al(n), az(q) of these waves are constant along any line
drawn on the sheet in the streamwise direction, but vary with transverse
location 5. They must be chosen (in accordance with the Kutta condition) to
ensure that the vortex sheet leaves the upstream semi-circular arc of the
aperture edge tangentially, i.e., such that Z(£,n) = 3Z(§,n)/d§ = 0 for
(§2+r;2)1/2 =1, £ < 0. Evidently, al(n), az(n) are even functions of 7n.
Potential theory (Kellogg 1954; Sneddon 1966) implies that ¢ will generally
exhibit a mild singularity of order 1/VR-r at the downstream edge r =

(x2+yz)1/2 =R, x > 0, of the aperture. The singularity is integrable, however
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(yielding a finite value for the volume flux Q (2.4)), and is a physically
acceptable, linear theory representation of the large amplitude and violent
motions produced by vortex impingement on an edge (Rockwell 1983). A
correction that incorporates the influence of displacement thickness waves on
the downstream surfaces of the plane (modeling vorticity convected in the
boundary layers after ejection from the aperture) can be introduced to
eliminate the singularity, but this cannot be done in a unique manner and is
not expected to modify significantly the conclusions of the present simpler

approach (Howe 1981b).

The solution of the integral equation (2.6) determines the volume flux Q

via (2.4). The definition (1.1) then yields

K, - mR[ 2(&,mdedn. (2.8)

In the absence of flow the conductivity is real and equal to 2R. In the more

general case it is convenient to set

K = 2R(I‘R - 1A.), (2.9)

where FR and A, are real valued and depend on the frequency w.

2.2 Numerical results

Numerical solutions of equation (2.6) have been obtained by discretizing
the integral. The aperture was overlaid by a mesh of square integration

elements within each of which Z, a, and a, were assumed to be constant, and

1
the Kutta condition imposed by requiring Z to vanish in those elements
overlapping the upstream edge (where the flow separates) and in each of the
contiguous elements just downstream. The application of (2.6) in each element
of the mesh supplies a sufficient number of equations to determine the
discretized values of Z, a; and a,. Further details of the procedure are
given by Scott (1995). In the degenerate case in which the mean velocities on
each side of the plane are the same and equal to U (so that o, =0, = wR/U),

the right hand side of equation (2.6) was taken in the modified form
1+ [al(r]) + az(n>§]ei”5, where o = wR/U.

The real and imaginary parts of the conductivity (2.9) are functions of
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the Strouhal number wR/U, and the velocity ratio U_/U,. Their calculated
values are given in Tables 1 and 2 for the two cases of (i) one-sided flow: U,
= U, U. =0, and (ii) two-sided flow: U = TU_ = U. 1In applications these
tabulated results can be approximated by cubic splines, and this has been done

in plotting I'y and Ay for these two cases in Figure 2.

For one-sided flow (Case (i)) TR = 4 when wR/U becomes large and the
imaginary part A, > 0. A, is negative for 1.9 < wR/U < 3.9. According to
equation (1.4), a negative amount of work is then done by the applied pressure
[p] = p,-p_, i.e., energy is extracted from the mean flow. In Case (ii) (U, =
U ) the motion is irrotational when [p] = 0. However, there still exist
periodically spaced frequency bands (of period m when wR/U > 3) within which
Ay < 0, and where perturbations grow at the expense of the mean flow. This
extraction of mean flow energy is not associated with vortex sheet
instability, but should in this case be regarded as a consequence of the
interaction of the vorticity with the semi-circular "leading edge" on which it
impinges after convecting across the aperture. We shall show in §4 that cases

(i) and (ii) are fundamentally different, inasmuch as the aperture motions are

respectively absolutely and conditionally unstable.
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Conductivity of a circular aperture for one-sided grazing flow

Boston University, College of Engineering

U =U,U =0
wR/U R Ay wR/U FR R
0.00 0.000 0.000 1.50 1.949 0.623
0.10 -0.030 0.005 1.75 2.097 0.244
0.20 -0.119 0.041 2.00 2.233 -0.131
0.30 -0.253 0.145 2.25 2.409 -0.540
0.40 -0.395 0.360 2.50 2.708 -1.006
0.50 -0.464 0.710 2.75 3.277 -1.459
0.60 -0.350 1.140 3.00 4,184 -1.555
0.70 -0.016 1.503 3.25 4,887 -0.969
0.80 0.439 1.673 3.50 4,897 -0.300
0.90 0.872 1.652 3.75 4.628 -0.000
1.00 1.216 1.515 4.00 4,398 0.059
1.10 1.466 1.333 4.25 4.258 0.033
1.20 1.644 1.142 4.50 4,189 0.003
1.30 1.774 0.959 4.75 4,175 0.011
1.40 1.872 0.786 5.00 4.182 0.115
Table 1
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Conductivity of a circular aperture for two-sided grazing flow

u =0 =1

wR/U TR Ay wR/U FR Ay

0.00 0.000 0.000 4.00 ©0.749 -0.031
0.10 -0.015 0.002 4.25 0.691 0.102
0.20 -0.057 . 0.019 4 .50 0.714 0.242
0.30 -0.119 0.063 4.75 0.805 0.345
0.40 -0.187 0.143 5.00 0.928 0.385
0.50 -0.243 0.264 5.25 1.048 0.363
0.60 -0.268 0.420 5.50 1.141 0.297
0.70 -0.247 0.594 5.75 1.195 0.203
0.80 -0.174 0.767 6.00 1.208 0.099
0.90 -0.055 0.916 6.25 1.180 0.002
1.00 0.096 1.030 6.50 1.115 -0.076
1.10 0.263 1.101 6.75 1.023 -0.120
1.20 0.431 1.133 7.00 0.920 -0.117
1.30 0.590 1.131 7.25 0.830 -0.065
1.40 0.734 1.103 7.50 0.778 0.026
1.50 0.860 1.057 7.75 0.781 0.130
1.75 1.102 0.894 8.00 0.836 0.215
2.00 1.252 0.705 8.25 0.922 0.259
2.25 1.331 0.514 8.50 1.014 0.256
2.50 1.354 0.333 8.75 1.091 0.213
2.75 1.329 0.169 9.00 1.139 0.143
3.00 1.260 0.029 9.25 1.152 0.062
3.25 1.152 -0.074 9.50 1.130 -0.017
3.50 1.015 -0.127 9.75 1.075 -0.079
3.75 0.870 -0.114 10.00 0.998 -0.112

Table 2
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2.3 Comparison with previous work

The two-sided flow problem where U, = U =7U has been investigated by Howe
(1980), who derived the following integrai equation for the dimensionless
normal velocity v’ = -i(¢ + 18/3&)Z of the vortex sheet

v’ (€' ,n*)de" dn’ '
= ¢ + a(mel?s, (2P <1, (2.10)
S J((¢-€ )2+(n-n")?) xnoe g

where C is a known constant. The Kutta condition was imposed by choosing a(n)
to ensure that v’ is finite over the upstreém edge ($2+r)z)1/2 =1, € <0 of the
aperture. Consequently, v - 0(1/VR-r) -at the downstream edge, on which the
shed vorticity impinges after convecting across the aperture. In fact,
equation (2.10) is invalid because the range of integration in (2.10) cannot
be restricted to the region S of the aperture unless account is taken of a
singular contribution to v’ from the downstream edge. When v - 0(1/VR-r) at
this edge, the displacement { will have a simple discontinuity there, with
limiting value ¢,» say, as r > R-0 (x > 0), and the singular velocity at the
edge would equal -U{Dé(r—R). This should appear as a separate contribution in
(2.10) and must be included in the evaluation of the volume flux Q. A finite
limiting behavior of ¢ at the downstream edge is possible only when U = U_,
since in general the edge singularity is much stronger than a simple
discontinuity, being proportional to 1/VR-r, although the aperture flux

remains finite.
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3. THE RECTANGULAR APERTURE

It is of interest to compare the numerical predictions for a circular
aperture with corresponding results that can be derived in analytical form for

a rectangular aperture of large aspect ratio.

Take the mean flow in the x-direction with velocities U, above and below
the plate, as before, and let the rectangular aperture occupy the region |x]| <
s, |yl < %b, where the aspect ratio b/2s » i (Figure 3). In the notation of
§2, the vortex sheet displacement { satisfies the integro-differential
equation (2.5), in which S now denotes the rectangular area. An approximate
solution of this equation can be obtained when b/2s is large by assuming the
motion of the vortex sheet to be two-dimensional, i.e., by neglecting the
dependence of {(x’,y’) on the spanwise coordinate y’. The integration with
respect to y’ over (-%b,%b) in (2.5) may then be performed explicitly. If we
also integrate over —%b <y< %b, the resulting equation may be regarded as
satisfying the condition of pressure continuity across the vortex sheet in a

spanwise averaged sense.

To do this observe that, when x and x’ both lie within the aperture, so

that |x-x'| < 2s,

b/2

j dy’ dy — 2b sinh }(b/|x-x’|) - 2HVBEF(R-XIZ - |x-x’|}.
'b/2 '\/(X‘X’ )2+(y-y’ )2
- 2b[1n{2b/e|x-x’|} S B e 0 ] (3.1)
b 4b2 S)

where e is the exponential constant. When b/2s » 1 only the first term in the
brace brackets of this expansion need be retained. Making this approximation

in (2.5), and integrating with respect to the differential operator, we obtain

1 .
) 2b y io. €& io €
Il Z(¢ )1n[;§TETETT]d€ — 1+ el 4 ael®d, e <1, (3.2)

where

Z = (2p,0°s/n(p,-P.))S, € = %/s, & =X'/s
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and g, and o, are nondimensional Kelvin-Helmholtz wavenumbers defined as in

(2.7) with R replaced by s. The coefficients a, and a, are constants whose

values are fixed by the Kutta condition Z = 38z/3¢ = 0 at £ = -1.

The solution of (3.2) satisfying these conditions has been given by Howe
(1981b). Z varies like (§+l)3/2 near the upstream edge § = -14+0 of the
aperture, and is singular like 1/(1-§)lm at the downstream edge (§ - 1-0)
where the vortex sheet impinges on the solid surface. The volume flux

Q = {nb(p, -p.)/2ip,w} I, Z(€)dE,
and the Rayleigh conductivity is therefore equal to %bf}lz(ﬁ)dg. Using the

solution given by Howe (1981b) we find

b
(3.3)

% T 37 y + )’

1792
where

-alJo(oz)[Jo(al)-ZW(al)] + azJo(al)[JO(az)-ZW(oz)]
o W(0,) [, (0,0 -2W(a )] - 0,W(5,) (3, (0,)-2(s,)]

, ¥ = 1n(4b/es), (3.4)

W(x) = ix[JO(X) - iJl(x)], and Jo and Jl are Bessel functions.

The conductivity in the absence of flow is also given by (3.3) by

formally setting F = 0. For that case we can write

K /2R, = (x°b/32s)Y%/1n(4b/se}, (3.5)

where R = (25b/7r)1/2 is the radius of the circle of area 2sb (that of the
rectangle). According to Rayleigh (1945) the circular aperture has the
minimum conductivity of all apertures of the same area, and indeed the right
hand side of (3.5) has a minimum value of about 1.1, and does not exceed 1.2

when 2.5 < b/s < 12.8.

Figure 4(i) illustrates the dependence of the real and imaginary parts of
KR(w)/ZRe = FR - iAR on ¢ = ws/U for one sided flow, U =10, U = 0 when the
aspect ratio b/2s = 10. These curves are qualitatively the same as the
corresponding plots in Figure 2(i) for the circular aperture. It follows from

equations (3.3), (3.4) for the rectangular aperture that
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|

3 1/2
=M’ Azo’g-)u)’
R 1n(4b/se?) R
(3.6)
T, = -30% (n°b/328)12, A = 80°% (n°b/328)Y2, ¢ » 0.

Thus, at high frequencies the conductivity is real and exceeds that in the

absence of the vortex sheet (provided 4b/se® > 1).

For two-sided flow with U = U_ = U, there is no vortex sheet in the

steady state and 0, > 0, > 0O ws/U. The correspdnding limiting form of

function F of (3.4) is

iUJO(JO-iJl) - [JO-ZiU(JO-iJl)][Jo-ia(J0+iJ1)]

(3.7)
a[J031+a{J§+(JO-2iJl)2)]

F(o,0) = ,
where the Bessel functions are evaluated at o = ws/U. The variations of I
and A, with o are shown in Figure 4(ii) for b/2s = 5. Once again, the results
are qualitatively similar to those in Figure 2(ii) for the circular aperture.
However, whereas Figure 2(ii) indicates that the oscillatory behavior of KR
ultimately dies out, and that PR »> 1, AR » 0 as 0 » ©, the limiting behaviors
for the rectangular aperture remain oscillatory, with period m, since

F = 4/{5sin(20)+4icos(20)-3} when 0 > 2. As o > 0 we find

I, = -50% (r°b/328) %, Ay = 60% (n°b/328) 1% 3.8
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4. ABSOLUTE AND CONDITIONAL INSTABILITY

The volume flux Q is determined by the applied pressure [p] = p,-p. and
the conductivity K. All of these quantities are generally functions of the

frequency w, and the real form of (1.1) is

p,3Q(0) /3t = - K@) [p(@)]e HC du. (4.1)

The integration is nominally taken over all real values of w. However, if the
integrand has singularities in the upper half of the complex w-ﬁlane, the
integration contour must pass above them to ensure that causality is
satisfied. Since [p(t)] is arbitrary, and may be assumed to vanish prior to
some initial instant, any singularities in Im(w) > 0 must be associated with
K (w). When they are present the system is unstable, and an unsteady flux
through the aperture can develop spontaneously. Also, because Q(t) and [p(t)]
are real valued quantities, it follows that KR(-w*) = K;(w), where the

asterisk denotes complex conjugate.

Consider the stable case in which KR(w) 2R{TR(w)-iAR(w)} is regular in

Im{w) > 0. For real w we have

T (-0) = Ta(@), A (-0) = -8 (0). (4.2)

In general FR(w) > I' = constant as |w| > @ and AR(w) »> 0. The function
flw) = PR(w)-Pm-iAR(w) is regular in Im(w) > O and vanishes as |w| > ®.
Cauchy’s theorem (Carrier, et al 1966) applied in the usual way to a closed
contour consisting of the real axis and a semi-circle in the upper half-plane
whose radius grows without limit, then implies that

F(w) = (1/271) [° £(€)dé/(¢-w) for Im(w) > 0,
where the integration is along the real axis. The real and imaginary parts of

this expression as Im(w) = +0 yield the Kramers-Kronig formulae

e¢]

2 (* Ay (A)dA

A2-p2

~ 20 (° [Tg(A)-T,]dA
x do A2 -2

(w real)

A ()

3

(4.3)

where the integrals are principal values.
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When the motion is stable these equations can be used to determine I,
say, when AR(w) is known. If KR(w).vanishes at zero frequency (as it would
when vortex shedding completely blocks the aperture flux), the constant T is

found by setting w = 0 in the first of (4.3).

Alternatively, when FR(w) and AR(w) are known for real w, equations (4.3)
can be used to investigate the stability of the flow. If the equations are
not satisfied KR(w) must be singular in Im(w) > 0, and the motion is
absolutely unstable. This is the case for one-sided grazing flow over the
circular and rectangular apertures of §§3, 4, and is presumably a consequence
of vortex sheet instability. According to Figures 2(ii) and 4(ii), Ay < 0 for
discrete ranges of real frequencies for two-sided flow when U= U_ = U.
Equation (1.4) indicates that energy is extracted from the mean flow at these
frequencies. However, the Kramers-Kronig formulae are satisfied by the
numerical data for two-sided flow in Figures 2(ii) and 4(ii). The dots in
these figures represent values of Tp computed from the first of the
Kramers-Kronig equations (4.3) using the respective values of A, shown in the
figures (taking A (X) =0 for A > 20). The motion is therefore conditionally
unstable: energy is extracted from the mean flow only when the applied

pressure [p] contains a component with frequency within an interval where Ay <

0.

When the aperture is backed by a cavity (in which U_ = 0) whose
dimensions are large compared to the aperture diameter, the instability of the
shear layer can excite and sustain cavity acoustic resonances. This can occur
only when the frequency lies within the range where A (w) < 0. For the
circular aperture it is usual to express the frequency at which a resonance is
excited in terms of the Strouhal number fD/U, where f = w/27 and D is the
diameter. According to Figure 2(i) flow excited cavity resonances must occur
for 0.6 < fD/U < 1.15. This range is consistent with experimentally observed
Strouhal numbers forblaminar, high Reynolds number flow over cavity openings
in cases where the shear layer is well approximated by a vortex sheet, i.e.,
when the shear layer thickness is very much smaller than D (see, e.g., DeMetz

and Farabee 1977).
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5. CONCLUSION

The Rayleigh conductivity K, of an aperture in a thin plane determines
the volume flux through the aperture genefated by a small amplitude, time
harmonic pressure load. When the motion is incompressible and irrotational K,
is real and constant, and depends only on the shape of the aperture. The
conductivity is complex for a real fluid. If there is a tangential flow over
the plane, and the Reynolds number based on aperture diameter is large, the
pressure load can be assumed to generate vorticity at the aperture edge, which
causes perturbation energy to be absorbed or generated by the mean flow,
according as Im{KR} ; 0.

In this paper K, has been calculated numerically for tangential flow over
a circular aperture of radius R by modeling the shear layer as a vortex sheet.
For one-sided flow at speed U, energy is extracted from the mean flow when the
Strouhal number wR/U is between about 1.9 and 3.9. The aperture motion is
absolutely unstable, in the sense that a small perturbation in the mean stream
can trigger motion of the vortex sheet that becomes unbounded on the basis of
linear theory. When the mean velocity is the same on both sides of the plane
the flow is irrotational in the steady state. Vorticity is generated by an
applied pressure (in accordance with the Kutta condition) and there are
discrete, quasi-periodic frequency intervals within which perturbation energy
is alternately absorbed and generated by the mean flow. However, this motion
is conditionally unstable, in that perturbation energy grows at the expense of
the mean flow only when the applied pressure is non-zero and of the

appropriate frequency.

The numerical results for a circular aperture are in qualitative
agreement with analytical predictions for a rectangular aperture of large

aspect ratio, whose long edge is transverse to the mean flow direction.
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rigid plane

vortex sheet

Figure 1. Tangential flow over the upper and lower surfaces of a thin,

rigid plane with a circular aperture.
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Figure 2.
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rigid plane

Figure 3. Rectangular aperture of large aspect ratio. The long edges of the

aperture are transverse to the mean flow direction.
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Figure 4.
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CHAPTER 4

DAMPING OF SOUND AND VIBRATION BY FLOW NONLINEARITY IN
THE APERTURES OF A PERFORATED ELASTIC SCREEN

101




! Report No. AM-96-006 Boston University, College of Engineering

\

|

\

!

|

SUMMARY
An analysis is made of the influence of flow nonlinearity in the

apertures of a perforated elastic plate on the damping of sound and flexural
vibrations. Fluid is forced through the perforations by the pressure
differential established across the plate by the incident disturbance. The
Reynolds number is assumed to be sufficiently large that separation occurs,
and the reciprocating aperture flows form "jets" on alternate sides of the
plate. The growth of these jets is modeled by means of a nonlinear equation
proposed by Cummings (1986). This equation is solved simultaneously with a
generalized bending wave equation derived by the author (Howe 1995a) which
governs motions of a perforated elastic plate whose lengths scales are large
compared to the aperture spacing. It is shown that significant attenuations
of large amplitude acoustic waves can occur except when the frequency is so
small that the plate is acoustically transparent. Bending waves are also
damped provided the amplitude of the plate surface velocity is not too large
and the frequency is small enough to ensure the formation of substantial jets
in the apertures. Numerical results are given for large amplitude sound waves
incident on a perforated screen in air, and for bending waves propagating over

aluminium and steel screens immersed in either air or water.
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1. INTRODUCTION

When a sound wave impinges on a solid surface in the absence of mean flow
dissipation usually occurs through the direct action of viscous and molecular
thermal diffusion. At very high acoustic amplitudes, however, free vorticity
is formed at sharp edges, and dissipation takes place by the transfer of
energy to the kinetic energy of the vorticity, which is convected away from
the interaction region by self-induction. This nonlinear mechanism can be
particularly important when sound generates motions in small perforates or
apertures; when the acoustic Reynolds number wR? /v is large (w being the
acoustic frequency, R the aperture radius, and v the kinematic viscosity) it
is independent of the viscosity, except insofar as viscosity must be called
into play to permit vorticity to be released into the fluid (Sivian 1935;
Thurston, Hargrove & Cook 1957; Ingard & Ising 1967; Zinn 1970; Melling 1973;
Cummings 1984, 1986; Salikuddin 1990; Salikuddin & Brown 1990). In addition,
aperture nonlinearity typically causes sinusoidally varying incident sound to
produce periodic reflected and transmitted waves containing multiple harmonics

of the incident wave frequency.

This mechanism of attenuation by kinetic energy production has long been
exploited to increase the damping of moderate amplitude sound by the simple
expedient of introducing a high Reynolds number mean flow (Barthel 1958;
Bechert, Michel & Pfizenmaier 1977; Bechert 1979; Howe 1979, 1980a, b;
Rienstra 1981; Cargill 1982; Hughes & Dowling 1990; Guo 1991). For example,
the absorption of acoustic energy by a perforated screen is enhanced when a
"bias flow" is maintained through the apertures. Viscous effects are
important only in the immediate vicinity of the surface, where vorticity is
produced by the acoustic oscillations; the vorticity is subsequently swept
away by the mean flow and its kinetic energy is permanently lost to the
incident sound. When the fluid loading is small, such as for a steel plate in
air, it is usually permissible to estimate the damping by assuming the screen
to be rigid, but for plates immersed in liquids the loading is often large
enough that high acoustic intensities are accompanied by significant
structural vibrations. Vorticity production is then modulated both by the

sound and the surface motions. Thus, a bias flow may be expected to cause
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enhanced absorption of structural vibrations as well as sound.

An experimental investigation is currently in progress at Boston
University to quantify the influence of grézing and bias flows on the
absorption of structural vibrations by a perforated plate. In this paper the
importance of nonlinear aperture motions on damping is examined in the absence
of mean flow. An objective is to assess the likely contribution of aperture
nonlinearity to the observed attenuations. A generalized bending wave
equation governing the propagation of small amplitude flexural motions of a
thin, fluid loaded, perforated elastic plateihas previously been applied (Howe
1995a, b) to determine the influence of mean flow (either a bias flow, or a
tangential mean flow) on damping. This equation is also applicable in the
absence of mean flow and for nonlinear aperture motions, provided the plate
motion is linear. Cummings (1986) has proposed a simple and convenient system
of nonlinear equations for fluctuating forced motions in small circular
apertures in the absence of mean flow, predictions of which have been
validated by comparison with experiment. These equations are here adapted and
used in conjunction with the generalized bending wave equation to investigate
the interaction of long wavelength sound and flexural vibrations with
apertures in a thin elastic plate. In particular, we consider the problems of
the transmission of sound through a perforated plate, and the damping of

bending waves.

The governing equations are reviewed in §2. The sound transmission
problem is discussed in §3, where a comparison is made with corresponding
predictions for a rigid screen. In §4 we investigate the interaction of a
bending wave on a fluid loaded elastic plate with a single, isolated aperture,
and make extension to bending waves propagating over a homogeneously

perforated plate.
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2. THE GOVERNING EQUATIONS

2.1 Nonlinear theory of unsteady high Reynolds number flow through a circular

aperture

Consider a rigid wall of thickness h containing a circular cylindrical
aperture of radius R. The wall is immersed in fluid of uniform mean density
p, and sound speed c_, and a time-periodic pressure differential [p] =
pz(t)-pl(t) (of radian frequency w > 0) is applied across the wall as
illustrated schematically in Figure 1. The mean value of [p] is assumed to
vanish, so that there is no mean flow through the aperture; the aperture
radius R and wall thickness h are assumed to be much smaller than the
characteristic acoustic wavelength 2n/k_, where x = w/c_is the acoustic
wavenumber. During the interval of time in which p, > p,, fluid is forced
through the aperture from left to right in the figure. The Reynolds number is

assumed to be sufficiently large that the flow through the aperture separates

and forms a jet.

To motivate the following discussion, the motion within the jet will
first be assumed to be irrotational, and the pressure on the free surface of
the jet is taken to be p,. Let V,(t) denote the mean axial velocity of the
jet where it enters the aperture (at O in the figure). Bernoulli’s equation
applied to the axial streamline within the jet between O and the point marked
J just within the potential flow region at the head of the jet, where the
velocity is V, and the pressure p,, implies that

2 A
po

where @, and ¢, are the values of the velocity potential at O and J. The flow
into the aperture may be regarded as entirely irrotational, so that we also
have

3 12 P1°Py
EE(¢A'¢1} *2Va T P (2.2)
o]

where the motion at large distances (> R) from the aperture in the

irrotational domain is assumed to be small enough to be governed by linearized

equations, i.e., p; = -poawl/at.
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Rayleigh’s formula (Rayleigh 1945) can be used to write @, -9, = ALV, (),
where A = 0.82R is the "end-correction" of the circular opening into the

irrotational region. Also,

ZJ
8¢, /3t - dp,/dt = _[O gv(e,t) /ot df,

where v(z,t) is the velocity on the axis of the jet at distance z from the
inlet plane. The value of the integral in this formula is denoted by

2’(t)6VA/8t, where £’ (t) is a suitable, time dependent length.

Inserting these expressions into equations (2.1), (2.2) and adding, we
find
- -[p] (2.3)

12
23 ’
pO

av
2(t)—* +
()at

where £2(t) = Al + 2’ (t). Equation (2.3) describes the motion of a slug of
fluid of variable effective length £(t) and variable mass poAOZ(t) (where

A, = nR%? is the area of the aperture) subject to a driving pressure p, -p, and
a resistive force -%pvoV§. In the half-cycle during which the flow through
the aperture is from right to left in Figure 1, equation (2.3) remains valid
provided the sign of the nonlinear resistive term is reversed. The velocity
VJ can be eliminated by writing VJ = VA(t)/q, where n is a contraction
coefficient. By this means we arrive at the following equation describing
reciprocating, periodic flow through the aperture (Cummings & Eversman 1983;
Cummings 1986)

8V, , ValVal _ -[P]
at 2n2 P

2(t) (2.4)

o

If the flow were entirely irrotational (no jet formation) the length £(t)
would be constant and equal to X +A,, where A, = A +h = 0.82R + h (Rayleigh
1945). When separation occurs £(t) can be expressed in terms of an effective

length of the jet defined by
T

L) = [ Vet (2.5)

where the time 7 is measured from the beginning of the half cycle during which
the sign of V, (t) is constant. From an analysis of data derived from aperture
flow experiments performed by Ingard (1953), Thurston, Hargrove & Cook (1957)

and Ingard & Ising (1967), in which the working fluid was either water or air,
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Cummings (1986) deduced the following empirical relation between the lengths

£(t) and L,
A2

.t 1+ﬂ(L/D)1'585’ B =3z, D=2R. (2.6)

|

2(t) = A

There is no corresponding formula for the dependence of the contraction
ratio n on r. This would be expected to vary significantly only near the
beginning of a half cycle when, however, the nonlinear resistance is small.
Experiments for steady flow suggests that n = 0.61, but in a careful
comparison of predictions of equations (2.4) - (2.6) with experiments
involving high amplitude sound incident on small circular apertures, Cummings

(1986) has concluded that n may be regarded as constant and equal to 0.75.

2.2 The generalized bending wave equation

Consider next a thin elastic plate of bending stiffness B, mass density
p, = m/h (m being the mass of unit area of the plate) and Poisson’s ratio o,
perforated with small circular apertures of equal radius R which are
distributed uniformly with N per unit area. In the undisturbed state, let the
median plane of the plate occupy the plane z = 0 of the rectangular coordinate
system (x,y,z). The fractional open area a = NaR? is assumed to be small, so
that the average distance d (- 1/VN) between neighboring apertures is very
much greater than R. When a < 1 the average equation governing motion of the
fluid-coupled plate whose length scale is large relative to d can be cast in
the form (Howe 1995a)

2 ang

2a0 4 a B
(l-a)[[l ; ZITZS]BVZ + mgzz]gP + [p] - 2aRp =", (2.7)

where V; (62/6x2+82/ay2)2, Cps Sa respectively denote the displacement of
the plate and the mean fluid displacement in the apertures, both measured in
the xz-direction, [p] = p(x,y,+0,t) - p(x,y,-0,t) is the pressure jump across
the plate, and all quantities are averaged over a region of the plate
containing many apertures. The flexural motions of the plate are small, and
governed by linear theory, but the fluid motion in the apertures can be large,

and satisfy in a first approximation (Howe 1995a) equations (2.4) - (2.6),

wherein VA = VA(x,y,t) = 6§A/8t.
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3. ABSORPTION OF SOUND AT A PERFORATED ELASTIC SCREEN

3.1 Equations of motion

The equations of §2 are first applied to estimate the influence of
flexural motions on the transmission of sound through a perforated screen (the
average aperture spacing d being small comparéd to the characteristic
wavelength of the sound). Consider the simplest case, depicted in Figure 2,
in which a plane, time-harmonic acoustic wave of pressure p = pIcos{w(t-z/co)}
(where P; is constant and w > 0) is incident from z < 0 on a thin elastic
screen of thickness h, whose median plane is z = 0. The transmitted and

reflected acoustic pressures at distances |z| > d from the screen must also be

plane periodic waves, so that

P pIcos{w(t-z/cO)} + pR(t+z/co); z < 0,

pT(t-z/Co)y z >01 (3.1)

where, because of the nonlinear motions in the apertures, the transmitted and

reflected waves pT(t+z/c°) and pR(t+z/c°) are generally not simple harmonic.

Equation (2.10) supplies the functional relations

Py (t) = poc V(E), Pp(t) = pyeos(wt) - p, e V(L) (3.2)

which determine the reflected and transmitted waves in terms of the aggregate
normal velocity V of the perforated plate, and yield

[p] = 2pIcos(wt) - 2pocoV(t).
Substituting this expression for [p] in equations (2.3), (2.7), and expressing
Ca and ¢, in terms of V and Vs the equations governing the fluid-structure

interaction reduce to

£(t)€YA + ValVsl + 2¢ V(t) = 2P1 cos(wt),
at 2n2 0 R
(3.3)
miz + 2p ¢ V - a(m + 2Rp )ia-YA = 2p.cos(wt),
at o o Oat I

where £(t) is determined by equation (2.6), in which L is the discontinuous
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function defined by the differential form of (2.5):

JL
e |V,|, L =0 when V, = 0. (3.4)

The periodic solution of these equations must be determined numerically
for prescribed values of the incident pressure amplitude p, and frequency w.
This is done by assuming that p, vanishes for t < 0, that V = vV, =0 at t = 0,
and integrating for t > O until the solution becomes stably periodic, usually

after three or four cycles.

The acoustic power incident on unit area of the screen is
‘ _ 2
I-II - pI/zpc)(:o
when averaged over one cycle 2m/w. Similarly, the mean reflected and

transmitted sound powers per unit area are given respectively by

2

© J [pIcos(wt) - pocoV(t)] dt, l'[T =

wp,C,

I oo
2

_ VZ(t) dt, (3.5)
R 2mp_c J

where the integrations are over one acoustic cycle.

An absorption coefficient may also be defined by

po1 .=t 20000 I V(t) [p,cos(wt) - p,c V(t)] dt, (3.6)

o, np%

which is the fractional acoustic power absorbed by vorticity production at the

screen.
3.2 Numerical results

It is convenient to introduce dimensionless velocities and time as

follows:
V = V/(wR), VA = V,/(R); T = wt/2m. (3.7)

Let the fluid be an ideal gas of mean pressure p = poci/y, where y is the
ratio of specific heats. The incident wave amplitude p, may then be

normalized with respect to p_, and equations (3.3) - (3.6) become
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N LV 4
AN o t(pl/p°) cos (2nT)
2 (k R) y(k R)?2

~

v v 2Rp 18V 4 R
v, am [Rp°] - a[l + p°]__A - ”(pl/p°)[ p°]cos(2nT) L (3.8a, b, c)

aT (¢ R)Um m aT 7(“0R)2 m
d (L
6—T[5]= IVal, D= 2R, )
= __4(’YFC°R)2 ' 7 (PI/pc;) —
A= (pI/po)z JO V(T) [-_—’YK,OR COS(ZWT) - V(T)] dT, (3.9)

where k= w/c  1s the acoustic wavenumber of the fundamental mode, and £/R is
defined by (2.6) with A= 0.82R, A, = 0.82R + h. In this form the equations
clearly exhibit the dependence of the fluid-structure interaction on the
dimensionless quantities

p,/P,, P,/Pys R/h, K R and a.

Figures 3 - 5 depict typical numerical predictions for an aluminium plate
in air with fractional open area a = 0.03 and R = 10h. The thick and thin
curves in Figure 3 represent the respective contributions of the components
aVA and (1-a)VP of the normal velocity V (i.e., the respective contributions
from the aperture fluxes and the plate motion) for x R = 0.1 and different
incident wave amplitudes. Each pair of curves is plotted to the same scale
for a given value of p /p_, but the scales for different values of p /p  are
not the same. At low acoustic amplitudes the motion is dominated by the
aperture flows, which are essentially simple harmonic; the very much smaller
amplitude plate motions are seen to be in phase with the aperture velocity.
As the acoustic amplitude increases, higher harmonic components of the
fundamental frequency make progressively larger contributions to the aperture
flux, and the plate motion becomes larger, but still simple harmonic.
However, the phases of the plate and aperture motions diverge as pI/po

increases, the difference being close to 90° when p /p = 0.1.

The dependence of the absorption coefficient A on the acoustic amplitude

is plotted in Figure 4 for several values of k R (the range of values of pI/po
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in the figure corresponds to sound pressures between about 110 - 170 dB (re
2x107° N/m?*)). The curves for x R = 0.05 are essentially identical to those
for a rigid perforated plate of the same thickness (which can be calculated by
letting poR/m > 0 in equations (3.8)). At lower frequencies, however, the
elastic plate becomes progressively more transparent to the incident sound
and, whereas the rigid plate damping tends to a finite limit for each value of
xR, the elastic plate damping ultimately decreases to zero. This is clear
from Figure 5, which compares the absorption coefficients for elastic and

rigid screens as a function of frequency for two values of p_/p_.
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4. NONLINEAR DAMPING OF BENDING WAVES

4.1 Absorption by a single aperture

A flexural wave propagating over a thin, fluid loaded elastic plate of
thickness h is accompanied by a traveling pressure field which takes equal and
opposite values at opposite points on the surfaces of the plate. If the wave
encounters a small, isolated aperture, this pressure differential causes fluid
to flow through the aperture, and part of the incident energy is converted
into the kinetic energy of the vorticity produced in the aperture. An
approximate expression for the wave energy absorbed in this way is easily

derived as follows.

Let the bending wave propagate in the x-direction and denote the

displacement of the plate by

¢ = Re[zPei(kX'wt>], k, w >0, (4.1)

where Z, is constant and kh < 1 (wavelength » h). It follows from equations

(2.8) and (2.9) that the pressure jump [p] = p(x,y,+0,t) - p(x,y,-0,t) is

20 W7o 3
[p] = —Re[vg%?;EPel(kX wt)]. (4.2)

The bending wavenumber k is the real positive zero of the dispersion equation
obtained by substituting from (4.1) and (4.2) into equation (2.7) with a = 0

and ¢, set equal to ¢, i.e., of

2p w?
= nL4 _ 2 _ o _
D(k,w) = Bk mw NPy 0. (4.3)
o]

This zero satisfies k > &_, and characterizes a wave that propagates
subsonically relative to the fluid, and whose influence decays exponentially

with distance from the plate.

Suppose the wave impinges on a small circular aperture whose center is at
the origin, and whose radius R is much smaller than the bending wavelength (kR
< 1). It may be assumed, without loss of generality, that Z, is real, so that

the velocity in the aperture, V is determined by equation (2.4) with the

A b
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right hand side replaced by (2w22P/Vk2-m§)cos(wt). When the equation is

nondimensionalized as in (3.7), we obtain

cos(2xnT). (4.4)

2 T - 4nZy

Z A VY| = —————
R n A R2Vk2-k2
The bending wave power II, dissipated at the aperture is supplied to the

aperture flow via the driving pressure [p], and is easily seen to be equal to

-nR2<VA[p]>, where the angle brackets denote a time average, i.e.,

m, = - Ler?[ v, (0)[p(0)]dt, (4.5)

where the integration is over the period 2n/w of the wave. The energy flux
associated with the incident bending wave is shared between that propagated by
the elastic motions in the plate and that conveyed in the evanescent motions
of the fluid. The power flux II, say, per unit length of wavefront parallel to
the plate can be calculated from the formula I = (w]ZP|z/4)6D(k,w)/6k, where D
is the dispersion function (4.3), and the derivative is evaluated at the
bending wavenumber. The ratio II, /Il defines the absorption cross-section of

the aperture, which may be cast in the following nondimensional form,

o, 4WR2pow2nosz-n§ 1
2RI k[5k!-4(ke_)2-mw2] M

1
s = JO V, (T)cos(2nT)dT. (4.6)

where M = wZ,/c  is the amplitude of the bending wave surface velocity

expressed as a Mach number.

The dependence of HA/ZRH on frequency predicted by this formula is shown
in Figures 6 and 7 for different values of M respectively for the two cases
(i) a steel plate in water with R/h = 3, and (ii) an aluminium plate in air
with R/h = 10. In these figures the frequency is normalized by the
coincidence frequency of the plate: w_ = ci(m/B)lm (above which bending waves
in vacuo have phase velocity w/k > co). These results indicate that, however
small be the amplitude M of the incident wave, a significant fraction of the

wave energy is absorbed at sufficiently small frequencies, where the curves

peak.
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Equation (4.6) can be used to derive an approximate formula for the
damping of bending waves on a homogéneously perforated plate. If there are N
apertures per unit area of the plate, the'change 6l in the bending wave power
over a distance 6x in the direction of propagation of the wave is

approximately equal to -2NRIZé6x, i.e.,

T ey = SoRp0 VEE kG Il T (T)cos(2aT)dT %.7)
— —_— = = —_ CcoSs T . .
I dx k[5k4-4(kno)2-mw2] MJo 4

To account for damping the amplitude Z, of the plate motion must now decrease

with increasing x. If we define

-1 9z, -1 aI
kK = -~

I Z,9x T 1 8x

(4.8)

then ¢_ = Re[Z ei(kx-wt)-klx], ie., 2, =2 e'kIX, where Z_. = 7Z at x =0. k
P o P o P o I
(>0) may be regarded as the imaginary component of a complex wavenumber k =

k+ik1, where, however, kI must itself depend on x, because of the nonlinear

nature of the damping.

This formula for k, neglects the collective influence of the apertures on
the wavenumber k, i.e., it assumes that the bending wave dispersion equation
is (4.3), as for an unperforated plate. Similarly, it ignores the important
fact that the amplitude of the motion in the apertures will tend to be smaller
than for an isolated aperture, because the pressure difference [p] must be
very much smaller for the perforated plate, even if the amplitude of the plate
motion is unchanged. Thus, equation (4.7) would be expected to determine an

upper bound for the actual damping due to vorticity production.

It is convenient to express the attenuation in terms of the fractional
power dissipated per wavelength (2r/k) of propagation, which is equal to
AOﬂloglée)kI/k (dB) = 5.46k1/k (dB). Predictions of this derived from (4.7),
(4.8) are illustrated in Figure 8 for a thin aluminium screen in air with 3%
fractional open area and aperture radius R = 10h, when the vibration Mach
number M = 1072, 10™* and 10°%®. These results, and the physical constraints
on the amplitudes of possible plate motions in practice, suggest that the

damping is significant only at small frequencies w/w_ - M (when the aperture

115




Report No. AM-96-006 Boston University, College of Engineering

motion is nonlinear even when M » 0, because the lengths of the jets become

large when the period 2n/w > ®).
4.2 Equations for bending waves on a perforated plate

To obtain more precise estimates of the damping, and extend these results
to underwater applications where the pressure differential [p] produced by
surface motion might be expected to be very much larger than in air, we now
proceed to the formulate a self-consistent analytical model of flexural wave
propagation over a homogeneously perforated plate. Consider motions in which

the displacement (, of the plate has the harmonic, traveling wave form

¢, = Re[ZPei(nx—wt)], w >0, (4.9)

where Z, may be taken to be a real, positive constant. The wavenumber x must
be complex, however, and for propagation in the positive x-direction we write,
k =k + ik, (4.10)

where both k and k must both be positive.

Expand the mean aperture displacement {, in the form

¢, = Re[Ziei(Kx'wt) +Y ziein(kx'wt)] , (4.11)

n22

where the coefficients ZX (n = 1) are generally complex quantities. The first
of these, Zz is assumed to be constant, so that the decay of this term as the
wave propagates is accounted for by the imaginary part of the wavenumber k.
This hypothesis, and the related assumption that Z, is constant, is correct ‘in
a first approximation; it will be seen, however, that Zi and Z, must actually
vary slowly with x, but only over distances large compared to the dissipation
length l/kI. The higher order terms in (4.11) have real wavenumber k, and
their decay is accounted for by assuming the coefficients ZX (n = 2) to be

slowly varying functions of x on a scale of the bending wavelength 2n/k.

The pressure fluctuations on either side of the plate satisfy the linear
wave equation (2.8). The solution of this equation must have "outgoing"
behavior with respect to the plate, and may be expressed in terms of ¢, and ¢,

via the boundary conditions (2.9) where, as before, the median section of the
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plate is assumed to coincide with the plane z = 0 in the undisturbed state.

At distances from the plate that are large compared to the aperture spacing d,

we find
1 »
P = _sgn(z)powZRe[[ (1-3)3P+ZQZA]91(K’X-wt>- IZI "Cz'lcg

K2-K

[e]

asgn(z)ﬂowz [ n ﬁ(i(kx-wt)-]leEiT;f)]
- =~ 9" Re| ) nZle o' ]. (4.12)
\/Ez-—'cg nx2 A

The first term on the right hand side is the bending wave pressure field.
The sum represents the contribution from the nonlinear components of the
aperture motions. We shail argue that this latter contribution is negligible
at distances much larger than d from the screen, because "waves" of
wavenumbers nk and frequencies nw (n = 2) induced by the aperture fluxes do
not satisfy the dispersion equation (analogous to (4.3) and to be derived
below) for flexural waves on the perforated plate, and their growth to finite
amplitﬁde is therefore opposed by the plate. Thus, the pressure jump that

drives the aperture flows is taken to be

[(1-a)Z,+ azi]ai(nx-wt)
Vnz-ng ]' (4.13)

[p] = -2p,%Re|
Further justification of this approximation is given in §4.4, where an
alternative approach is outlined that is strictly applicable when the damping

due to vorticity production is small.

The equation describing the unsteady motion in an aperture whose center

is at (x,y) is deduced from (2.4) by replacing t by t - kx/w, and [p] by

(4.13). In nondimensional form we find
5 7 = -27iT
L3V, m_ - [(1-a)Zy /R + aZ;/R]e
o]
where T = (wt-kx)/2n, and
Z, = z,e" k¥, 71 = zlenlkeX, (4.15)
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The solution of equation (4.14) depends on the complex wavenumber k,
which is the solution of the appropriate dispersion equation for the
perforated plate. The latter is obtained by substituting from (4.9), (4.11)
and (4.12) into the linear, generalized bending wave equation (2.7). When
attention is confined that component of the motion of wavenumber « and radian

frequency w the nonlinear terms from (4.11) and (4.12) may be discarded, and

(2.7) yields

2 20Rp, ZL 2p,0° Zy
R R ) LI ==t (I e I (4-10)
1o (1-o)m Z, Vez-sll la Z,

Equations (4.14) and (4.16) must solved simultaneously for VA, Zi and the

wavenumber x. The definition (4.11) supplies

1
Zb - ZiRJ T(r)e?™T ar. (4.17)
0

4.3 Numerical results

The nonlinear aperture equation (4.14) is solved in conjunction with
equation (3.8c), which determines the variation of the length £(T) via the
empirical relation (2.6). The solution, which must be periodic with period
2m, depends on both the local amplitude ZP of the plate motions and the

wavenumber x, given by (4.16).

The solution can be effected by the following iterative procedure. The-
frequency w and magnitude ZP of the local amplitude of the plate motion are
prescribed, and equation (4.16) is first solved for x by setting Z;/ZP = 0.
This initial estimate for x will be real, and corresponds to one of the two
equal and opposite real roots of the dispersion equation (4.16) when Zi = 0;
the positive root is. selected when the wave is taken to propagate in the
positive x-direction. The presence of the apertures will change this root,
and endow it with a positive imaginary part kI that accounts for the damping
of the wave. Next, (i) equations (4.14) and (3.8c) are solved, and the result
used to calculate a corrected value of Zi/ZP = Zi/ZP from (4.17); (ii) the

revised value of z;/zp is inserted into (4.16) and the wavenumber x is
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re-calculated by iterating about its value for Z;/ZP = 0; steps (i) and (ii)

are repeated until convergence is achieved.

If the local plate amplitude is expreésed as a Mach number M = wZP/co,
this naive iteration procedure is found to converge rapidly except at very
small values of M (typically less than 10°°) and within an intermediate range
of frequencies w/w, marginally larger than M, wherein successive iterates of
zi/zP tend to fluctuate wildly. This difficulty is avoided by using at stage
(ii) of the iteration the running mean <Zi/ZP> instead of the most recently
calculated approximation for Zi/ZP, where at the nth iteration

1 ol
(z3/2,) = — L (/%);, n>1.
=1
When n becomes large successive estimates & of the wavenumber x obtained in
stage (i) are then found to converge monotonically, and a rapidly converging
estimate for k can be obtained by making use of a simple extrapolation formula

of the type

-K

X
St x = In[@-1)/(-2)]/Infn/ (-]

The fractional bending wave power dissipated per wavelength (2m/k) of
propagation (= 54.6kI/k dB) calculated by this procedure is illustrated in
Figure 9 for the aluminium plate in air considered in §4.1. A comparison of
these predictions with those shown in Figure 8 (based on the absorption
cross-section of an isolated aperture in an unperforated plate) reveals that
the major differences occur at lower plate Mach numbers M. The scattering
cross-section theory tends to overestimate the damping except at very low
frequencies where the attenuation is small. Predictions of equations (4.14) -
(4.17) for a perforated steel plate in water (for a = 0.05 and R/h = 3) are
given in Figure 10. iLarge fluctuations in pressure can now be caused by
flexural motions of the plate because of the relatively high density of water,
and the predicted attenuations are correspondingly much higher than for a

screen in air.
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To estimate the significance of these predictions, observe that for a
plate of thickness h, the amplitudeFZE of the plate motion can be expressed in
the form »

_ Mh

%~ Taju )0, B/0)’ (4:18)

where wch/co ~ 0.22 and 0.95 respectively for an aluminium plate in air and a
steel plate in water. Thus, w/w must typically be larger than M to ensure
that the amplitude of the plate motion is small compared to the plate
thickness. Although the latter condition is not strictly necessary for the
applicability of the thin plate equation at low wavenumbers, structural
motions are in practice unlikely to attain amplitudes comparable to h.
Accordingly, it is only at frequencies w/w_ > M, to the right of the
corresponding peaks in the Figures 9 and 10, that the present predictions are
relevant. However, surface Mach numbers M are generally much smaller than
discussed here, and correspondingly at the finite frequencies of interest in
applications (typically w/w > 10°*), it appears from these results that

nonlinear damping will be negligible.
4.4 Alternative analysis applicable for small damping

The aperture equation (4.14) was derived by assuming that the dominant
contribution to the local pressure jump [p] is given by the linear theory
approximation (4.13), associated with the bending wave component of the
pressure. This approximation accords with intuition, but its accuracy is
difficult to quantify in general. An alternative formulation is possible when

the damping is small, however, that fully justifies the approximation in that

limit.

Let the plate and aperture displacements be taken in the form (c.f.

(4.9), (4.11))
_ i(kx-wt) _ n_in(kx-wt)
Cp = Re[ZPe ], Co = Re[ z ZAe , w>0, (4.19)
nz1
where the wavenumber k is required to be real and positive (for propagation in
the positive x-direction), and where all of the coefficients Z, and ZZ (n=>1)

are assumed to be slowly varying functions of x on a scale of the flexural
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wavelength 2n/k. The damping of the wave is now accounted for by the decay of

the coefficients ZP and Zi. As before, it may be assumed that ZP is real.

The pressure in the fluid at distances » d from the plate is

-sgn(z)p w? - Vik2-x2
P = __gi?fi?g‘_ (1-a)Z,cos (kx-wt)e” | 2] ki-kg 4 p,, (4.20)

o

where the first term on the right is the contribution from the plate motion,
and p, is the collective effect of the apertures. When the damping is small
p, may be regarded locally as a function of kx-wt and z, in which case it

satisfies the following reduced form of equation (2.8)

k2182 8%
° =
[{1 - E315;2+ EEE}pA = 0. (4.21)

Now nz/kz < 1 for a subsonically propagating flexural wave, and the
solution of this equation with outgoing wave behavior can therefore be
expressed in terms of the limiting values as z »> 0 of dp,/0z = -ap 0V, /8t by
the methods of two-dimensional potential theory (Carrier, Krook & Pearson
1966). Correct to the present order of approximation we can write 4V, /dt =

-(k/w)avA/ax, and it then follows that

_ sen(z)ap,e V, (7) [7- (t-kx/w) ]d7
s Im ([r-(t-kx/w)]2 + z2(k2/w2-1/c2)) (4.22)

The equation of motion of fluid in the aperture at (x,y) is formed by
replacing t by t - kx/w in equation (2.4), and calculating [p] from (4.20) and
(4.22). In the usual nondimensional form the result is

5%,

A+

2 m
= 3T ;2 cos(2xT) , (4.23)

T+ ba fw U, (T)dT’  4r(l-a)Z
alVal RVKZ-kZ 1, T'-T  R2VKkZ-xZ

where T = (wt-kx)/2r. The principal value of the integral represents the

pressure jump associated with the aperture flows.

The solution of this equation determines {, from the relation 4¢,/dt =

VA, from which we find
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1 .
7t = 21Rj0 v, (1)e2™iT ar. (4.24)

Next substitute from (4.19) and (4.20) into the generalized bending wave
equation (2.7). In this linear equation we are concerned solely with that
component of the solution of wavenumber k and frequency w, but with account
taken of the slow variation in the amplitudes Z, Zi caused by damping.

Hence, we can set

-2pow2
[P] - '\/_EETg.

Re[[(1-a)zP + az;]ei<kx'wt)]. (4.25)
When these various substitutions are made in equation (2.7) and the
separate coefficients of cos(2nT) and sin(2xT) in the resulting equation are

equated to zero, we find

2cc0 2aRp z: 2p w? aZt
1 - ———JBk“ . [1 S —. _éﬂ 2 . e [1 + _——_éi—) =0, 4.26
( l-o (l-a)m Zp e sz-noz (l-a)ZP ( )
1 2
-E EE? _ 2a(ZAi/ZP)pow sz-ng[l - Rsz-ng] (.27
Z_8x 2a0 20Rp 71 ’
P k[[l-———}(Skz - 4k?)BK? - [1 : Po _éﬂmwz]
l-o0 ° (1-a)m Z,
where Z;r, Z;i respectively denote the real and imaginary parts of Zi. In

deriving these equations derivatives of Z, of higher order than the first have

been neglected, and we have used the result (l/ZP)BZP/ax = (l/Zir)BZir/ax

When the ratio Z;/ZP is known, equation (4.26) becomes the dispersion
equation that determines the real wavenumber k in terms of w. For this value
of k equation (4.27) defines an imaginary wavenumber component k, =
—(l/ZP)GZP/ax, in terms of which the fractional wave power absorbed per

wavelength is 54.6k /k dB, as before.

Equations (4.23) - (4.27) are to be solved simultaneously with equation
(3.8¢), and this is accomplished by the iterative procedure described in §4.3.
The details are simplified by observing that, when VA(T) has period 1, the

principal value integral of (4.23) can be transformed to a regular integral
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over (0,1), and (4.23) cast in the form

@
<l

A

S bra Jl (V,(T*) - V,(T-[T]))dT’  4m(l-a)Zy

o
- = T
+ ; vV |V . tan(a(T - (T-[T]))) RZW/kZ—K.g cos(2nT)

2 alVal ¥ s

Al e
Q
=

(4.28)
where [T] is the integer part of T. The periodic solution of this equation is
obtained by integrating from T = 0, with V,(0) = 0. During the first period 0
< T < 1 the contribution from the integral is ignored. Integration of the
equation over subsequent periodic intervalsb(n, n+l) is performed by
evaluating the integral from the solution in (n-1,n). This procedure

typically yields a closely periodic solution for n > 6.

The calculations have been performed for two of the cases discussed in
§4.3 involving an aluminium plate in air and a steel plate in water, both for
a surface Mach number M = wZ,/c_ = 10"%. The predicted attenuations are
indicated by the dotted curves in Figures 9 and 10, and are seen to conform
closely to the corresponding predictions based on the approximation (4.13).
This agreement occurs only for the small attenuations obtaining in these
cases, however. Indeed, equations (4.26) and (4.27), which determine k and kI
= -(1/2,)82,/8%, may also be deduced from the general dispersion equation
(4.16), by expanding the solution x = k + ik, in powers of Zii/ZP. The zeroth
and first order approximations are respectively equivalent to equations (4.26)
and (4.27). Equations (4.26) and (4.27), with terms of 0(a?) discarded, may
also be seen to reduce to the scattering cross-section approximation (4.3),

(4.7) (wherein the integral determines Zy /2R).
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5. CONCLUSION

In this paper we have investigated the influence of flow nonlinearity in
the apertures of a perforated elastic screen on the attenuation of sound and
of flexural vibrations. The damping is a result of the direct transfer of
acoustic or vibrational energy to the kinetic.energy of vorticity generated in
the apertures by the incident disturbance. The sound or flexural wave
produces a pressure differential across the plate, causing fluid to "jet"
through the apertures. Large amplitude sound waves can experience substantial
attenuations which, however, progressively diminish at lower frequencies, when
an elastic plate ultimately becomes transparent to incident sound. Similarly,
it is predicted that flexural waves can be significantly damped, by several dB
per wavelength of propagation. Aperture nonlinearity is particularly
important for low amplitude bending waves at low frequencies w/w_ = M (M being
the Mach number of the plate surface velocity), when the wave period is
sufficiently long that nonlinear processes within an aperture have ample time
acquire a relatively large amplitude. However, the frequencies at which this
occurs are likely to be below those normally of interest in practice. At
higher frequencies, and at surface wave amplitudes encountered in
applications, the predicted structural damping is usually small, and it is
certainly negligible compared with that which can be achieved (by the same
vorticity production mechanism) when there exists a grazing mean flow past the

screen or bias flow through the apertures.
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PRINCIPAL SYMBOLS

B bending stiffness of the plate
c speed of sound in the fluid
D(k,w) dispersion function (4.3)
plate thickness

real part of flexural wavenumber

~ & o

-

imaginary part of flexural wavenumber
Rayleigh conductivity
aperture flow length defined by (2.6)

l"‘h;C

effective jet length

p h, mass per unit area of the plate

wZP/co or wzg/co, Mach number of the plate displacement velocity
number of apertures per unit area of the plate

pressure

(p] p(x,y,+0)-p(x,y,-0)

aperture radius

U o= =R 8

e

time
wt/2x or (wt-kx)/2x
aggregate plate velocity, (2.10)

mean aperture velocity

< << < 1t

jet velocity

amplitude of the nth Fourier coefficient of the aperture

N
>

motion

Z amplitude of plate displacement

NnR?, fractional open area of the plate

absorption coefficient (3.6)

(1-a)¢,+ag,

a

A

n contraction ratio of jet

¢

'Y mean displacement of fluid in an aperture

$p displacement of the plate

K k+ik , complex wavenumber
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w/e acoustic wavenumber

velocity potential

end correction

mean fluid density

density of plate material

Poisson’s ratio of the plate material
scattering cross-section (4.6)
acoustic or bending wave power
radian frequency

ci(m/B)lm, coincidence frequency
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Figure 1. High Reynolds number separated flow produced by a pressure

differential across a screen with an orifice.
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Figure 2. Interaction of a normally incident sound wave with a perforated,

elastic screen.
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Aluminium/Air, R/h = 10, k R = 0.05, o = 0.03
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Figure 3. Relative contributions of the apertures (aVA) and plate ((l-a)VP)

to the effective normal velocity V of the perforated plate.
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Figure 4. Absorption coefficient (3.9) for sound incident normally on an

elastic perforated screen.
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Figure 5. Comparison of the elastic screen absorption coefficient (

with that for a rigid screen (- — — —) of the same thickness.

133




Report No. AM-96-006 Boston University, College of Engineering

Absorption Cross-Section/2R

Figure 6.
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Absorption cross section calculated from equation (4.6) for a

bending wave on a steel plate in water incident on a small

circular aperture.
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Absorption cross section calculated from equation (4.6) for a
bending wave on an aluminium plate in air incident on a small

circular aperture.
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Estimate based on absorption cross-section
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Figure 8. Estimates of the damping of bending waves on a perforated plate in

air based on the absorption cross-section formulae (4.6) - (4.8).
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Figure 9. Damping of bending waves on a perforated aluminium plate in air

for @ = 0.03 and R/h = 10:

, predictions of equations

(4.14) - (4.17); eeee gmall damping approximation based on

equation (4.23).
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Absorption per wavelength (dB)

Figure 10.
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Damping of bending waves on a perforated steel plate in water for

a = 0.05 and R/h = 3: , predictions of equations
(4.14) - (4.17); eeee small damping approximation based on

equation (4.23).
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CHAPTER 5

RECOMMENDATIONS FOR FURTHER RESEARCH
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1. INTRODUCTION

The B-1B and F15 aircraft are configured with twin engine nacelles, and
both have suffered premature failure of external nozzle engine flaps caused by
high dynamic pressures. Model tests [1] confirm that the highest dynamic
pressures occur where structural damage is observed on full scale aircraft,
principally between the nozzles of the twin nacelle. Seiner et al [2]
correlated these high pressures with jet screech tones produced by the
interaction of turbulence and shock waves in the supersonic jet plumes. In
particular, intense surface pressures corresponded to a dynamic coupling of
the neighboring plumes, a common feature of parallel jets whose separation is
less than about four or five jet diameters [3 - 5]. More recent wind tunnel
tests [6, 7] have revealed that the supersonic plume resonance is actually
important only at low flight Mach numbers, typically less than about 0.5. At
higher flight speeds the pressures appear to be attributable to large-scale

vortex structures impinging from the aircraft forebody.

In practice the dominant mechanism is determined by flight profile and
aircraft configuration. The jet plume resonance can be eliminated by
inserting tabs into the nozzle flow or, more effectively, by means of a small
supersonic jet tube within the nozzle [7]. However, there is currently no

effective means of controlling the vortex dominated pressures.

In Chapter 2 we have advanced and developed arguments to determine the
damping of structural vibrations by vorticity production. The idea is that,
in the presence of a mean flow a vibrating structure will generate vorticity
that is subsequently convected away by the flow. Energy is required to create
vorticity so that, provided the back reaction of the pressure field of the
vorticity on the structure is small, structural vibrations tend to be damped.
Strong back reactions are avoided if the length scale of the vorticity is
small, and this can be achieved by perforating all or part of the vibrating
structure, and forcing the mean flow to pass either through or over the
perforates, in which case the vortex length scale is comparable to the

perforation scale.

To assess the feasibility of this method for inhibiting flap vibration we

have performed a series of basic, proof of principle tests using vibrating
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perforated plates in the Harvard University flume. The flume has not been
used for some time, and is in need of routine maintenance. In spite of this
we have obtained encouraging results which are discussed below in §3. In §2

we outline an approximate theory of vibration damping based on our work

described in [8, 9].
2. THEORY OF VIBRATION DAMPING

Consider a flat, rigid, rectangular airfoil of large aspect ratio and
chord 2a set at zero angle of attack to a low Mach number mean flow. The flow
is at speed U in the x direction of the rectangular coordinate system (X,y,z).
The airfoil executes small amplitude, time harmonic motions normal to its
surface (in the y direction, see Figure 1), such that its displacement at time
t is §0exp(-iwt), where the real parts of all complex quantities are to be
taken. The rate II; at which energy is supplied to the flow due to vortex

shedding at the trailing edge of the airfoil is given approximately by

I, = wanwzCR(wa/U)|§'0|2 (1)

per unit span, where p is the mean density of the fluid and C, is the real

part of the Theodorsen function

C(x) = iHM(x)/(H{V (x)+iH{V (%)) (2)

When wa/U > 1, CR(x) = 0.5, and

m, = mpalw? ¢ |%/2, wa/U> 1. (3)

Consider next the case of an airfoil perforated with a uniform
distribution of small circular apertures of radius R < a. The oscillatory
motion forces fluid through the apertures and leads to the ejection of
additional vorticity into the flow. Provided the aperture Strouhal
number wR/U is less than about 3, theoretical estimates [9, 10] indicate that

energy is supplied to the fluid at a rate

m = pwb|le]1?/2, (4)

where [¢] = @ -@_ is the difference in the unsteady velocity potentials just
above and below the aperture, and A = A(wR/U) is the imaginary part of the

Rayleigh conductivity K, of the aperture, defined by
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K, = 2R(T-i). (5)

In the absence of the mean flow, Ky is real and equal to 2R (i.e., ' =1, A =
0). The influence of tangential flow has been investigated in [9], with
predictions for I' and A shown in Figure 2. In the low frequency range 0 <
wR/U < 3, A is positive and large, and airfoil vibrations will tend to be

damped at these frequencies by vorticity production in the apertures.

To estimate the damping when the distribution of apertures over the
airfoil is uniform, we take the unsteady potential difference across the
airfoil to be

[p] = B’ iwg, (a®-x*)M2exp(-ivt), (6)

where §  1is the amplitude of the airfoil motion, B’ is a constant, and the
coordinate origin is at the center of the airfoil. This should be an adequate
approximation for large values of wa/U, except for points very close to the
trailing edge. For a rigid airfoil B’ = 2, but its value is actually much
smaller because of the reduction in [p] caused by "short circuiting" by the
apertures. If there are N apertures per unit area of the airfoil, and o =
Nsz is the fractional open area, we now find by integration of (4) over the

airfoil chord that the power dissipated per unit span can be cast in the form

M, = afpe’a’Al¢ |2/R, (7

where B is another constant.

Combining (1) and (7), for an airfoil vibrating with amplitude $1 the

net power dissipated per unit span by the vibrating perforated airfoil becomes

m = puw?al[nC, + aﬂ(wa/U)(a/R)A]|§1|z. (8)

Suppose next that the IIl = Ho’ i.e., that the vibratory motions of the
perforated airfoil at amplitude {; and the unperforated airfoil at amplitude
¢, are maintained by driving mechanisms delivering the same power. Then

equations (1) and (8) imply that,

11/, 1% = nCy/[xC, + aB(wa/U) (a/R)A]. (9
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3. PRELIMINARY DAMPING TESTS

The experiments were conducted in a low speed water flume that was
capable of flow speeds up to one meter per>second. Two interchangeable,
rectangular steel plates were used, each of 11" span, 6" chord and 1/32"
thickness. One plate was unperforated and the other was drilled with a
uniform distribution of circular holes of diameter 0.25" with a fractional
open area a = 0.1. Each plate could be bolted at one end to the lower end of
a wooden support, ‘as indicated schematically in Figure 3a (where the mean flow
is directed into the paper). The support could be raised or lowered to
submerge the plate to a water depth of about 3 inches. The other end of the
plate supported a 3" tall aluminum block, on the top of which was mounted a
lead-eccentric electric motor and a polyvinylidene difluoride (PVDF) vibration
sensor. The output of the PVDF was displayed on a digital oscilloscope which
gave a direct reading of the voltage. Steady operation of the motor at a
fixed speed caused the plate to vibrate at a known frequency, which was
measured stroboscopically. The connection between the block and plate was
rigid so that motion detected by the sensor also gave the amplitude of the
plate motion. The arrangement was such that both the motor and vibration

sensor were above the water surface.

The flow speed in the flume was adjusted to about 0.6 m/s, and was
measured by observing the average travel times of several straws placed on the
water surface over a distance of 2 yards. The electric motor was set to a
predetermined speed, and the output (voltage) from the vibration sensor was
displayed on the oscilloscope. The sensor output is proportional to the
vibration amplitude ¢ of the plate, and steady state amplitudes were recorded
at different frequencies for both the unperforated ({0) and perforated (§1)
plates. This permitted a comparison to be made of the vibration levels when
the plates were submerged to the same depth, the motor operated at the same
frequency, and when the delivered mechanical powers were the same. However,
the electric motor would function in a controlled manner only for a restricted
range of frequencies, and the measurements were therefore limited to the three
Strouhal numbers indicated in Table 1 (which correspond to frequencies between
10 - 30 Hz). The measurements were repeated on several different occasions to

guarantee the consistency of the data.
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WR/U | |§,/¢, 1% | 20xlog|§, /¢ | (dB)
0.35 2.4 - 3.8
0.5 1.23 0.9
0.95 1.86 : 2.7

TABLE 1: Measured Damping

The measured damping (column 3 of Table 1) corresponds to the prediction
of equation (9), and is plotted as open squares in Figure 3b. To apply
equation (9) to these measurements we first recognize that when wR/U = 0(1)
the Strouhal number wa/U based on the airfoil semi-chord is very large, so

that Ho may be approximated by formula (3) (i.e., CR = 0.5). Then (9) becomes

1€,/¢,1% = 1/[1 + 6(wR/V)A], | (10)

where 6 = (16/3n2)aﬂ(a/R)2. A proper estimate of the coefficient g should
strictly be made by solving a boundary value problem to determine the
effective velocity potential of the fluid motion produced by the vibrating
perforated airfoil. The solution of this problem requires the numerical
integration of the equations of motion. Experience with similar problems
concerned with the acoustics of perforated plates [11] indicates that B is

likely to be small.

According to Figure 2 the additional damping attributable to the
apertures should increase over the frequency range of the experiments. This.
is evidently not the case, at least for the first measurement at wR/U = 0.35,
which exhibits the largest damping of nearly 4 dB. Actually, in spite of the
care exercised in performing these measurements, it was not possible to obtain
a definite stroboscopic reading of the drive speed for the unperforated plate
when wR/U =‘0.35: the motor was on the point of stalling, and the best that
could be done was to use the speed obtained for the perforated plate (for
which stalling did not occur). This presumably accounts for the anomalous
result in Figure 3b at wR/U = 0.35. At the higher frequencies the constant
motor speed was easily maintained, and the motor did not stall. If the

measurement at wR/U = 0.35 is disregarded, the coefficient 6 of equation (10)

144




Report No. AM-96-006 Boston University, College of Engineering

can be adjusted to give the least squares best fit to the remaining two data
points. The optimum occurs when 6 = 0.96, and the solid curve in Figure 3b
represents the damping predicted by (10) for this value of 6. The theoretical

curve peaks at wR/U = 1.6, where the damping rises to a maximum of about 4 dB.
4., FURTHER WORK

The possibility of achieving vibration daﬁping of 3 dB or more can be
critical for the continued safe operation of fatigue sensitive structures.
Our preliminary experiments indicate that additional dampings in excess of
this may be attainable by suitably perforating a vibrating control surface.
The damping can be either passive, when the surface is placed in a tangential
flow, or active, when fluid is forced through the apertures, or perhaps more
optimally a combination of the two methods. We recommend performing two sets
of experiments and concurrent analytical and numerical work. The first set of
experiments should be performed in the Harvard University flume, a (largely
neglected) facility that is ideal for such studies; it can be used to validate
theoretical models and test new ideas suggested by the theory. A first
objective should be to obtain a complete data set of results, from a carefully
controlled series of tests with perforated and unperforated plates, to permit

validation of the theoretical models discussed in this report.

Second, wind tunnel measurements of the type discussed above for the
flume should be performed, but in a form more directly related to the nozzle
flap fatigue problem (§1). One such test is illustrated schematically in
Figure 4, in which the vortex wake from an upstream, spanwise oriented
cylinder excites vibrations in both conventional and perforated airfoils.
This configuration is an idealized analog of the excitation of an aircraft
engine nozzle flap by vorticity swept over the flap from the aircraft
forebody. Measurements will be made of vibration spectra for airfoils of
various sections. A comparison of corresponding results obtained for the
flume and wind tunnel will permit the dependence of damping on Mach number to
be assessed and compared with theory. The influence of compressibility on
damping will likely be important at higher Mach numbers, and this comparison

will indicate when such effects need to be included in the aperture flow

modeling.
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Analytical work should complement and facilitate interpretation of the

experiments, and permit extrapolation of measured results to full scale. This

might include
e a complete analytical model of the flume experiments

e the development of a general purpose computer code for the complex
Rayleigh conductivity of an aperture of arbitrary shape in a mean

grazing flow.

e numerical procedures to account for the influence of finite
airfoil/flap thickness, and "straking" of the flow-through cylindrical

neck connecting the aperture faces.

e an investigation of the combined effects of grazing and bias flows

through the apertures.
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Figure 1. Airfoil vibrating in uniform mean stream.
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Figure 2. The Rayleigh conductivity of a circular aperture in the presence of

a uniform tangential mean flow [9].
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(b) Measured damping of plate vibrations due to vorticity production
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Figure 4. Vibrations induced by a vortex wake.
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ABSTRACT

A summary review is given of theoretical predictions of the
damping of sound and structural vibrations by vorticity
production in the apertures of bias- and grazing-flow perforated
elastic plates. Unsteady motion causes vorticity to be generated
in the perforates; the vorticity and its energy are swept away by
the mean flow and result in a net loss of acoustic and vibrational
energy. Generalized forms of the thin plate bending wave
equation are given for plates perforated with small circular
apertures, and used to predict the attenuation of sound and
resonant bending waves. Acoustic damping is significant when
the fluid loading is small enough for the plate to be regarded as
rigid. Bending waves are effectively damped only when the
fluid loading is large and there is a substantial pressure drop
across the plate; when this occurs the predicted attenuations are
comparable with those usually achieved by the application of
elastomeric damping materials.

INTRODUCTION

Aerodynamic sound is generated by turbulence and unsteady
vorticity, and by their interactions with adjacent structures.
Acoustic energy can also be dissipated by vorticity production,
however, when sound impinges on a solid surface or fluid
region of nonuniform mean density. For example, sound
incident on the trailing edge of an airfoil in a mean flow will
cause vorticity to be shed into the wake; at low Mach numbers
this leads to an increase in the kinetic energy of the mean flow
and wake at the expense of the sound [1, 2]. Similarly,
perforated plates aligned with the mean flow through the tube
banks of a heat exchanger cavity can be used to suppress cavity
acoustic resonances by the production of vorticity in the
perforates; the kinetic energy of the vorticity is extracted from
the sound, convected away by the flow, and ultimately
dissipated by viscous and thermal processes [3, 4]. The same
mechanism is responsible for the greatly improved attenuation of
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“"screech” tones in the jet pipe of a jet engine when a bias flow
is maintained through the perforated heat shield normally used
to protect the wall liner from contact with hot combustion
products [5, 6].

The effectiveness of the acoustic attenuation in these cases is
critically dependent on the presence of mean flow [7 - 10].
Analytical predictions for rigid perforated screens indicate that
the attenuation is linearly proportional to the acoustic amplitude,
which is in broad agreement with experiment [6 - 8, 11, 12]. In
the absence of flow the attenuation is either a nonlinear function
of the acoustic amplitude (and therefore weak) or is dominated
by the less efficient action of viscous dissipation in the
apertures.

Theoretical analyses have usually assumed the screen, plate,
etc, to be rigid, although in practice high acoustic intensities are
accompanied by structural vibrations, and a substantial part of
the noise energy is contained in vibratory modes of the
structure. These modes would also be expected to be damped
by vorticity production, and a primary practical objective may
actually be the suppression of potentially harmful structural
vibrations rather than sound. The simplest model problem that
exhibits structural damping by this means is that in which a
bending wave on a thin elastic plate is reflected at a trailing edge
in a parallel mean flow (see Figure 1) [13]. Incident bending
wave energy is dissipated at the edge by scattering into sound,
and by a transfer to the kinetic energy of the mean flow and
wake. Below the coincidence frequency the efficiency with
which sound is generated is usually very small, but much larger
net losses are predicted owing to the generation of wake
vorticity.

The predicted fractional bending wave power dissipated at
the edge is plotted in Figure 2(a) for a steel plate in water for
several values of the mean flow Mach number M when the edge
of the plate is "free”. In this figure the radian frequency w is
normalized by the coincidence frequency w . For M =0 the
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dissipation can be attributed to sound radiated from the edge.
When M > 0 there is a significant increase in power loss at low
frequencies caused by a transfer of energy to the mean flow and
wake, with negligible changes in the radiated sound power (at
least for M < 1). This is clear from Figure 2(b), which
compares the total power loss for a steel plate in water (solid
curve) with the acoustic power (dashed curve) when M = 0.01.
Inspection of Figures 2(a) and (b) confirms that the sound power
is hardly influenced by the flow. At high frequencies the
radiation of sound accounts for all of the dissipation; this is
because, as w —> w, bending wave energy is contained
principally in the evanescent motions in the fluid on either side
of the plate, that propagate with negligible plate motion at a
velocity which is only slightly less than the speed of sound.

The dotted curve in Figure 2(b) is the fraction of the
dissipated energy which appears as kinetic energy of the vortex
wake. This indicates that, over the range of frequencies within
which acoustic dissipation is negligible, roughly half of the
dissipated energy is used to accelerate the mean flow and half
goes into the wake; this is not generally the case, but depends on
the type of mechanical constraints at the edge [13].

THE BIAS-FLOW ELASTIC PLATE

Consider an elastic plate perforated with small circular
apertures. Let there be N apertures per unit area each with
radius R. A mean pressure differential is maintained across the
plate which produces nominally steady, low Mach number, high
Reynolds number jets of fluid through the apertures (Figure 3).
Generalized forms of the thin plate bending wave equation have
been derived in [14, 15] respectively for bias-flow and
grazing-flow screens when the length scale of the motion is
large compared to both the aperture radius R and the distance
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between the apertures. For the bias-flow case it was shown in
[14] that long wavelength, small amplitude, flexural displace-
ments { (proportional to ™) of a plate of bending stiffness B
and mass m per unit area immersed in fluid of mean density p,
satisfy

{[1-2a0/(1-0)]BV* - me} ¢

+ {1 + 2NRKR[1 - (1/2Rpw2)(BV4-mw2)]}[p] =0, 4))
where o = N7R is the fractional open area, ¢ is Poisson's ratio
for the plate, vi=( 2/¢'~)x2+62/6y 2)2 (where the z- or xy-plane
coincides with the undisturbed location of the plate), and K, is
the Rayleigh conductivity of the apertures. [p] is the net pressure
force on the plate (in the direction opposed to that of increasing
.

The conductivity determines the volume flux Q (in the
positive {-direction) through an aperture as a result of a long
wavelength pressure differential [p] according to the relation,

Q =K [#] = K, [pVipw, @
where & is the corresponding perturbation in velocity potential.
In this limit, in which the length scale of the motion of the plate
is much larger than the aperture radius R, it was argued in [14]
that K is well approximated by its value for a rigid plate. K
has the dimensions of length and is equal to 2R in a statlonary
ideal fluid, but becomes complex valued and frequency depend-
ent in the presence of flow, because of the unsteady shedding of
vorticity from the aperture edges.

Introducing the Strouhal number S = wR/U, where U de-
notes the vorticity convection velocity in the bias flow jets
(approximately one half of the mean jet velocity), we can write

K, = 2R{T'(S) - iA(S)}, 3

where T' and A are real and positive (for S > 0). The
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dependence of I"and A on S is shown in Figure 4 (from [14]).

Dissipation of sound

Let a plane acoustic pressure wave of the form exp(-ixz) be
incident normaily on the screen from z > 0 (Figure 3), where «
= wlc (c = speed of sound) is the acoustic wavenumber. The
pressure can be taken in the form

p = exp(-ikz) + Rexp(ixz) , z > 0,

= Qexp(-ikz), z <0, 4
where ® and & are appropriate reflection and transmission
coefficients, respectively. The displacement { of the screen is
related to p by ¢ = (I/pwz)aplaz (z = £0). This together with
equation (1) supply two equations from which % and & can be
determined. The absorption coefficientd = 1- | R |2 - | & | 2
is equal to the fraction of the incident acoustic power dissipated
at the screen. The solid curves in Figure 5 show the variation
of & with Strouhal number for sound incident on a perforated
aluminium plate in air, when the bias flow convection Mach
number M = 0.05 and R/h = 5, where h is the thickness of the
plate. The maximum attenuation of = 0.5 (3 dB) occurs at an
open area ratio « = M over a range of Strouhal numbers
centered on S = 0.4. At very low frequencies the impedance
offered to the sound by the plate becomes negligible, the bias
flow jet velocities are unmodulated by the sound, and there is no
transfer of acoustic energy to hydrodynamic motions.

The corresponding predicted attenuations for a rigid bias-
flow screen are depicted by the broken curves in Figure 5. The
elastic and rigid screen predictions differ when the frequency is
Jow enough for the screen to be regarded as acoustically
transparent. The illustrated behavior is typical of cases in which
the fluid loading is small (for metallic screens in air, say). For
the other extreme of a steel plate in water the absorption of
acoustic energy is found to be negligible at all frequencies.
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Damping of bending waves
A flexural wave { = {Oe’k" with the associated pressure
loading

[p] = 20{w?/N(K=k)} {e™

satisfies the bias-flow bending wave equation (1) provided the
bending wavenumber k is a zero of the dispersion function

D(k,w) = [1-2a0/(1-0)]BK - me
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In the absence of the bias flow (KR - 2R), D(k,w) has
precisely two equal and opposite real zeros. They satisfy
| k| > « and correspond to undamped flexural waves on the
perforated plate. To the present order of approximation there is
no damping due to scattering of structural energy into sound.
The absorption of bending wave energy by the bias flow jets
causes the formerly real bending wavenumber k to acquire a
small positive imaginary part that accounts for the progressive
decay of the wave. The power absorbed per wavelength of
propagation is plotted against the Strouhal number § = wR/U in
Figures 6 and 7 for a perforated steel plate in water and several
different open area ratios « for an aperture radius R = h, 3h

—>U I~
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Rshed A N
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Vibrationally
induced vortex shedding

Figure 9.
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respectively. The bias flow vorticity convection velocity U = 3
m/s (M = 0.002). Increasing the open area ratio increases the
attenuation, whereas increasing the size of the apertures reduces
the maximum possible attenuation.

To assess the significance of these predictions we plot in
Figure 8 the corresponding absorption of bending waves on a
coated steel plate in water. For the purpose of illustration the
mass of the coating is neglected, but the coating is assumed to
make the effective stiffness of the plate complex, such that the
bending stiffness B of the uncoated plate is replaced by
B(l - iy), where 7 (> 0) is a loss factor whose value is
determined by the properties of the coating, and is typically of
the same order as shown in the figure [16]. As w increases
towards w both the bending and acoustic wavelengths become
comparabfe to the thickness of the plate and thin plate theory
ceases to be strictly applicable. A comparison with figures 6
and 7 indicates that the attenuations achieved by the bias flow
jets can be comparable with those predicted for the coated plate.

Much smaller attenuations are predicted for bending waves
propagating on a bias flow screen in air (see [14] for details).

THE GRAZING-FLOW SCREEN

The modified bending wave equation for a perforated plate in
a uniform, low Mach number tangential mean flow at speed U
in the x-direction (Figure 9) is given in [15] in the form

{w+iU3/3x} *{[(1-200/(1-0))BV-ma]§ + (1+2NRK)[pl}
- (NK_/p)BV*-me)[p] = 0. )

The following asymptotic formulae for KRIZR = I'-iA are
derived in [17]:
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In applications to the attenuation of flexural and acoustic waves,
the most significant effects occur at low Strouhal numbers § <
1, for which the following rational approximations are adequate
for estimating dissipation rates:
=~ 2.298%/(1 + 2.298%), A = 1.7SK1 + 1.678?). (8)
The variations of " and A given by these approximations are
similar to those already depicted in Figure 4 for the bias-flow
screen. The rational approximation for A is too large by a
factor of 3 as § — oo, but the behavior for S <1 should be well
approximated by (8).
The flexural wave dispersion equation is now

[1-2a0/(1-0)]Bk* - ma? - {2p(w-Uk) */1/(k *-«*)}
x{1 + 2NRK_[1-Bk"mo/)/2Ro(w-UKf]} = 0. (9)

Proceeding as for the bias-flow screen we calculate the
typical attenuations illustrated in Figures 10 and 11 for a steel
plate in water at different fractional open areas «and aperture
radii. The results are for bending waves propagating in the
direction of the mean flow (solid curves), and in the direction
opposite to the mean flow (dashed curves).

Comparing these predictions with Figure 8 for a nominally
homogeneous plate with one or more layers of absorptive
coatings, it can be seen that the attenuations are comparable with
the best obtainable by coating the plate, at least for Strouhal
numbers in the interval 0.1 - 1.
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CONCLUSION

The predictions presented in this paper for bias- and
grazing-flow perforated elastic plates indicate that significant
attenuations of sound and flexural vibrations are possible
provided a sufficiently large fluctuating pressure gradient can be
established across the screen to cause unsteady production of
vorticity in the apertures. When the fluid loading is large (e.g.,
for metallic plates in water) an unrestrained elastic screen is
effectively acoustically "transparent”, and the damping of sound
by vorticity production tends to be negligible. Large acoustic
attenuations can occur for a lightly loaded plate (in air, say).

The damping of bending waves increases with the fluid
loading, since the surface pressure fluctuations produced by a
wave of given surface displacement tends to increase with fluid
density. For bias-flow screens the damping is greatest for
aperture Strouhal numbers S = wR/U (based on the vorticity
convection velocity U) between about 0.03 and 3, and the
attenuation experienced by bending waves on a perforated steel
plate in water can then exceed or be comparable with that for
waves on a heavily coated plate. Similar results are obtained for
grazing-flow screens, the maximum attenuation for waves on a
perforated steel plate in water occurs for wR/U in the range 0.1 -
1 (where U now denotes the tangential mean velocity).
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